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Visual statistical learning describes the encoding of structure in sensory input, and it has important consequences
for cognition and behaviour. Higher-order brain regions in the prefrontal and posterior parietal cortices have
been associated with statistical learning behaviours. Yet causal evidence of a cortical contribution remains
limited. In a recent study, the modulation of cortical activity by transcranial direct current stimulation (tDCS)
disrupted statistical learning in a spatial contextual cueing phenomenon; supporting a cortical role. Here, we
examined whether the same tDCS protocol would influence statistical learning assessed by the Visual Statistical
Learning phenomenon (i.e., Fiser and Aslin, 2001), which uses identity-based regularities while controlling for
spatial location. In Experiment 1, we employed the popular exposure-test design to tap the learning of structure
after passive viewing. Using a large sample (N = 150), we found no effect of the tDCS protocol when compared to
a sham control nor to an active control region. In Experiment 2 (N = 80), we developed an online task that was
sensitive to the timecourse of learning. Under these task conditions, we did observe a stimulation effect on
learning, consistent with the previous work. The way tDCS affected learning appeared to be task-specific;
expediting statistical learning in this case. Together with the existing evidence, these findings support the hy-
pothesis that cortical areas are involved in the visual statistical learning process, and suggest the mechanisms of

cortical involvement may be task-dependent and dynamic across time.

Through repeated experience, the human brain can form implicit
knowledge about complex patterns in the sensory environment (Fiser
and Aslin, 2001; Turk-Browne, 2014). This ability, known as statistical
learning, has been observed across a variety of task domains (Kirkham
et al., 2002; Perruchet and Pacton, 2006; Conway and Christiansen,
2005) that vary in terms of the stimulus dimension (i.e., visual, auditory
and language), the type of regularities (i.e., sequential, spatial or
graph-based regularities) and their relational components (i.e., adjacent
or non-adjacent probabilities). This ubiquitous nature of statistical
learning has led to the proposal of a domain-general neural mechanism
for encoding structure based on experience (Fiser and Lengyel, 2019;
Perruchet and Pacton, 2006; Reber, 1989). In support of this idea, there
appears to a common list of brain regions in which activity correlates
with detecting regularities across various task domains (for a review, see
Batterink et al., 2019). Recent brain stimulation evidence has clarified
the involvement of frontoparietal regions in the visual statistical
learning process (Nydam et al., 2018; Rosero Pahi et al., 2020). Yet the
nature of this involvement across tasks that are believed to tap the same
underlying process requires further investigation.

1. Statistical learning in visual scenes

An important function of statistical learning concerns our ability to
swiftly recognize visual scenes. After one repetition of a scene, visual
processing is biased by knowledge about how objects and features were
arranged in space and time (Biederman et al., 1982; Friedman, 1979;
Henderson et al., 1999). In their seminal work, Fiser and Aslin (2001)
demonstrated how the recognition of familiar scenes was based on
automatic encoding of statistical regularities between objects. The way
they measured this was by having participants view a series of spatial
arrays that contained abstract shapes arranged in a grid. Unbeknownst
to observers, each shape belonged to a base pair that had a fixed spatial
arrangement over the course of the experiment. The shapes were
recombined in all possible ways such that the base pairs were only
recognisable based on having a higher joint probability than other
coincidental shape-pair events. In a forced-choice recognition test, ob-
servers reliably selected the base-pairs over foil pairs (Fiser and Aslin,
2001). Since observers were not aware that any learning had taken
place, the knowledge was said to be implicit. Above-chance recognition
in the Fiser and Aslin task is taken as evidence that the encoding of visual
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objects is based on statistical characteristics beyond mere frequency
alone. In subsequent experiments, the same authors showed humans can
extract multiple higher-order statistics in parallel and can do so without
an active task or feedback (Fiser & Aslin, 2002a, 2005). This led to terms
such as “incidental” and “spontaneous” being used to describe the sta-
tistical learning process. The spontaneous Visual Statistical Learning
effect been used repeatedly in other work since (Conway et al., 2007;
Covington et al., 2018; Karuza et al., 2017; Luo and Zhao, 2017; Roser
et al., 2015; Schapiro et al., 2014; Zhao et al., 2011) to capture the
statistical learning process in vision.

Following this pioneering work, a variety of paradigms were devel-
oped to tap the learning of structure in spatial arrays (Fiser and Aslin,
2002b; Orban et al., 2008; Turk-Browne, Johnson, Chun and Scholl,
2008b). While some have followed the exposure-test deign to measure
all-or-none learning after passive exposure, others have employed a
cover-task to track behavioral performance throughout the learning
period (Turk-Browne, Johnson, Chun and Scholl, 2008b). Popular
among these has been the contextual cuing task (e.g., Chun and Jiang,
1998); possibly due to its ability to assess the effects of statistical
learning on behaviour that is distinct from learning of stimulus-response
patterns alone (i.e., SRT tasks).

In the standard contextual cuing paradigm, observers perform a vi-
sual search task and make a forced-choice response about a target
feature (e.g., its orientation). In half the search arrays, the position of
items is random across the blocks, and so search performance becomes
faster over time; in line with procedural learning in visual search. In the
other half of arrays, the position of items is fixed across blocks such that
the arrays come to predict a target location, which speeds search per-
formance compared to the control condition. This benefit is known as
the cuing effect. Importantly, because the fixed arrays do not predict the
target response, only the target location, the learning in contextual cuing
is distinguished from other purely motor or perceptual learning para-
digms (i.e., SRT tasks). Contextual cuing is believed to track the for-
mation of statistical learning about relationships in the visual scene
(Chun and Turk-Browne, 2008; Goujon et al., 2015). Thus, both the
Visual Statistical Learning effect and the Contextual Cuing task repre-
sent two prominent, but distinct, ways to tap a common statistical
learning process in spatial vision. Both tasks have also featured in the
neuroimaging work.

2. Neural correlates of visual statistical learning

The neural substrates of statistical learning involve a distributed
network of cortical, subcortical and sensory regions. This network is
likely to include both modality-specific and domain-general mecha-
nisms (for a review, see Batterink et al., 2019). In one case, there is
strong evidence to suggest that hippocampal involvement reflects a
domain-general role of the long-term memory system (Schapiro et al.,
2012; Schapiro et al., 2016). In another case, the activation of sensory
regions (e.g., visual, auditory, somatosensory) appears domain-specific,
with select regions only performing computations for the respective
input modalities (Frost et al., 2015; Conway and Christiansen, 2006). A
growing body of evidence reveals that high-level processing areas in
frontal and parietal regions are activated across a variety of input do-
mains. For example, activity in the left IFG (i.e., "Broca’s area™) is
correlated with statistical learning in the language domain (Cunillera
etal., 2009; Karuza et al., 2013), the auditory domain (Abla et al., 2008)
and the visual domain (Turk-Browne and Scholl, 2009); supporting the
notion that higher-cortical involvement may be somewhat
domain-general (Fedorenko et al., 2012). Such a role would be consis-
tent with the broader functions of these cortical regions in a range of
complex behaviours and cognitive operations.

Learning sequential relationships in the Serial Reaction Time (SRT)
task has undergone much investigation (Abla et al., 2008; Aly and
Turk-Browne, 2016; Gheysen et al., 2010; Turk-Browne et al., 2008b;
Turk-Browne et al., 2010). Learning in sequence tasks, either motor or
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visual, is associated with activity in prefrontal, motor and striatal re-
gions; consistent with the role of a procedural motor learning network.
But SRT tasks cannot dissociate the learning of statistical regularities
from the learning of visuo-motor response patterns. The neuroimaging
evidence from learning spatial regularities can more readily be distin-
guished from motor-response learning.

Statistical learning of spatial regularities has been associated with
activation in the left frontoparietal region across different task domains.
Using the contextual cuing task, there is consistent evidence that pro-
cessing spatial structure evokes BOLD activity changes in the left inferior
parietal sulcus (IPS), the superior parietal lobe (SPL), the temporal pa-
rietal junction (TPJ) and the medial prefrontal cortex (mPFC; Giesbrecht
et al., 2013; Hall et al., 2018; Manginelli et al., 2013; Pollmann, 2012;
Pollmann and Manginelli, 2010). Similarly, the passive Visual Statistical
Learning effect is associated with evoked activity in frontoparietal re-
gions, particularly in the left SPL (Karuza et al., 2017).

Moving beyond region-based activity, functional network changes
may also be important for visual statistical learning. During the
contextual cuing task, early activity changes in the IPS predicted the size
of the cuing benefit across individuals (Manginelli et al., 2013), sug-
gesting a functional relationship between parietal activity and learning
outcomes. Likewise, during passive exposure in the Fiser and Aslin task,
connectivity dynamics correlated with learning outcomes at test (Karuza
etal., 2017). More specifically, a portion of the superior parietal lobe (in
the left precuneus) and the lateral occipital cortex (LOC) decreased
connectivity with frontal regions early on, and this predicted greater
recognition of the pairs. Weakened connectivity in a
parietal-hippocampal network was also observed during exposure to
regularities during a search task in contextual cuing (Manelis and Reder,
2012). Together, this evidence builds a case for the intervening role of
frontal and parietal regions in the visual statistical learning process
across task settings. Yet it falls short of testing the hypothesis directly. It
remains unclear whether the evoked frontoparietal activity in fMRI
studies reflects concurrent processes that act on the task material or a
processes that directly contributes to learning. To settle these issues,
causal manipulations of brain activity during the learning period are
warranted.

2.1. Applying causal neuromodulation methods

Experiments using tDCS can uncover causal brain-behaviour links
that govern cognitive operations and behaviour (Filmer et al., 2014).
The technique involves placing two rubber electrodes on the scalp and
delivering a weak electrical current to a targeted brain region. The
stimulation is hypothesized to act on membrane potentials to modulate
the net likelihood of neural activity in a given target region or network
(Bikson and Rahman, 2013; Dayan et al., 2013; Filmer et al., 2014;
Nitsche and Paulus, 2000; Nitsche, Schauenburg, et al., 2003b). Unlike
TMS, tDCS cannot directly evoke action potentials (Ruhnau et al., 2018).
Instead, the induced current interacts with the state of the cortex at the
time of stimulation to alter the functional output of a given neural circuit
(Bikson and Rahman, 2013; Bortoletto et al., 2015). Therefore, by
combining tDCS with a task one can perturb a target network in a given
state in order to provide causal evidence regarding the neural mecha-
nisms that govern cognition and behaviour. This approach has been
successfully applied in the domains of motor learning (Nitsche,
Schauenburg, et al., 2003b; Reis et al., 2009) and cognitive training
(Filmer, Lyons, Mattingley and Dux, 2017a; Filmer et al., 2013; Filmer,
Varghese, Hawkins, Mattingley and Dux, 2017b) where delivering tDCS
over key processing regions during training not only altered the learning
behaviour but did so by modulating an underlying cognitive process;
namely memory consolidation in the case of motor learning (Reis et al.,
2009), and evidence accumulation in the case of decision-making
training (e.g., Filmer et al., 2017b). Whether similar effects may be
observed for implicit forms of learning has undergone only limited
investigation.
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Previously, and in the first study of its kind, we delivered tDCS
during a spatial contextual cuing task to investigate the involvement of
cortical regions in the statistical learning process (Nydam et al., 2018).
Across six experimental groups, tDCS was used to modulate activity in
either the left posterior parietal cortex or the left prefrontal cortex using
anodal, cathodal or sham stimulation. In the sham groups, a cuing
benefit appeared early and was maintained throughout the task. In the
cathodal groups, the early cuing effect was disrupted, suggesting that
stimulation delayed the statistical learning process. This cathodal effect
was observed for both the frontal and parietal target regions (Nydam
et al., 2018). The result was taken as evidence that frontoparietal regions
are involved in the visuo-spatial statistical learning process, consistent
with the fMRI work.

Based on the evidence to date, it appears that parietal regions may be
particularly important for statistical learning in spatial arrays. While
both contextual cuing and visual statistical learning tasks recruit frontal
and parietal regions, only the parietal region has been linked to func-
tional changes that predict implicit learning behaviour in both cases (i.
e., either via the parietal-hippocampal network or the frontoparietal
network; Karuza et al., 2017; Manelis and Reder, 2012; Manginelli et al.,
2013). A substantial body of research indicates the parietal cortex is part
of a multi-demand (MD) network recruited across a range of cognitive
domains (Duncan, 2010). In particular, the MD network involves a
specific set of prefrontal and parietal hubs, including the cortex around
the IPS, that comprise larger modules associated with cognitive de-
mands related to memory, attention and knowledge ( Dosenbach et al.,
2007; Duncan and Owen, 2000). The region of cortex around the IPS
represents a connector hub that has many functional linkages to other
interconnected modules, including the frontoparietal control network,
the saliency network and the memory retrieval network (Bertolero and
Basset, 2019). Frontoparietal circuits also interact with one another in a
time-varying manner to adapt brain function in support of behaviour
(Bassett et al., 2015; Bassett and Mattar, 2017). This circuitry makes the
frontoparietal network well placed to govern a cortical mechanism that
is important for the way statistical learning effects behaviour across
types of tasks. Here, we sought to investigate the modulatory effect of
tDCS on statistical learning using a different task than before, but one
that is believed to tap the same underlying process, namely visuo-spatial
statistical learning.

2.2. Current study

In two pre-registered experiments, we explored whether tDCS over
the left posterior parietal cortex (PPC) would alter learning in the Visual
Statistical Learning task. Building on the previous work (i.e., Nydam
et al., 2018), we focused on the effect of cathodal currents compared to
an orbitofrontal (OF) control region (in Experiment 1) and to a placebo
control (in Experiment 1 and Experiment 2). Our hypothesis was that if
the stimulation protocol influenced a domain-general statistical learning
process, the cathodal effect would generalize to a new task believed to
tap the same underlying process. Therefore, there was no clear reason to
include an anodal condition in the present study. Given the
resource-intensive nature of this research, in Experiment 2 we focused
on having a double-blind-placebo-control design. Based on the obser-
vation that activity changes in the SPL (Karuza et al., 2017; Manelis and
Reder, 2012) and the IPS (Manginelli et al., 2013) have been associated
with learning outcomes previously, we predicted that active tDCS over
the left PPC region would modify recognition in Experiment 1; either by
increasing or decreasing pair recognition compared to sham (non-di-
rectional hypothesis). If the tDCS effect was specific to our target region,
we predicted the left PPC group would differ from the OF control group
(non-directional hypothesis). Although the previous study on contextual
cuing found a reduction in statistical learning by cathodal tDCS, the
activity-dependent hypothesis (i.e., Bikson and Rahman, 2013; Borto-
letto et al., 2015; Batsikadze et al., 2013) asserts that the same direction
of behaviour change would not be predicted when using a different task
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(see Filmer et al., 2014). Any interaction between tDCS and statistical
learning will provide evidence that cortical regions are involved in the
statistical learning process.

3. Method
3.1. Preregistration

The design, hypotheses, and analysis plan were logged prior to data
collection, and the materials and data have been made available online
at: DOI 10.17605/0SF.I0/Y34XZ.

3.2. Participants

We recruited 150 healthy participants aged 18-40 years from The
University of Queensland community (mean age = 21.1 years, 63% fe-
male, 66% glasses or contact use; mean Oldfield (1971) handedness
score = 86%). Using a custom MATLAB script, participants were
randomly assigned one of three stimulation groups: the PPC group, the
sham group (placebo control) and the OF group (active control). The
participants were right-handed, with normal or corrected-to-normal
vision and were eligible to receive non-invasive brain stimulation ac-
cording to the international safety guidelines (Nitsche et al., 2008). All
provided informed written consent prior to participating and received
AUS$20 for attending a 1-h session. The study was approved by The
University of Queensland Human Research Ethics committee.

3.3. Deviations from preregistration document

The sample size of 40 per group was based on power calculations that
indicated 38 participants would be sufficient to achieve 85% power to
detect a medium effect size (Cohen’s d = 0.5) with alpha .05. Due to an
error with the randomization script, 50 individuals were assigned to the
sham group. Once realized, the sample size was amended to be 50 per
group and logged in the preregistration document.

3.4. Visual statistical learning task

3.4.1. Apparatus

Participants were seated approximately 63 cm from a 19” CRT
monitor (resolution 1024 x 768; 100 Hz refresh rate) connected to an
Apple iMac computer and a Macintosh keyboard. The experiment was
run using custom code programmed in MATLAB 2015b using the Psy-
chophysics Toolbox 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).
Due to constraints in lab availability, a portion of participants were run
in a different room that used a 24” ASUS nVidia LCD monitor (resolution
1920 x 1080, 60 Hz refresh rate) connected to the same computers.
Stimuli were adjusted to keep the same visual angle. There was no dif-
ference in learning based on monitor type or room.

3.5. Exposure phase

The methods for the visual statistical learning task followed those
developed by Fiser and Aslin (2001; Experiment 2). As shown in Fig. 1,
visual displays contained black shape-silhouettes (3.6° visual angle)
arranged in an invisible 3 x 3 grid (16° visual angle) presented on a grey
background (RGB: 80, 80, 80). For each participant, 12 shapes were
randomly selected from the pool of 24 shapes used previously (Fiser &
Aslin, 2001, 2002b) and each shape was assigned to one of six base pairs
with a fixed spatial arrangement; horizontal, vertical, or oblique (left or
right oriented). Each array contained one pair from each spatial
arrangement, which formed eight possible pair combinations. These
were then recombined in all possible cell locations within the grid to
create 144 trials. Exposure trials began with a fixation dot shown for
1000 ms (with up to 500 ms jitter), followed by the stimulus shown for
2000 ms. Since no responses were required during the exposure phase,
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Fig. 1. The Visual Statistical Learning paradigm followed the method of Fiser
and Aslin (2001). (a) Each spatial array contained three base pairs (i.e., A, B, C,
D, E, F). (b) During exposure, participants viewed 144 arrays over the course of
8 min with passive viewing. (c) During the test phase, participants were shown
two pairs, presented sequentially, and had to select the more familiar pair. Each
base pair was compared to two foil pairs, and with counterbalanced order to
form 24 test trials. Note the green shading was included here for emphasis and
was not part of the stimulus. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

participants were simply instructed to view the slideshow with eyes
open and to be awake. Exposure lasted 8 min and there was a self-paced
break at the half-way point where participants pressed the space bar to
continue.

3.6. Test phase

After exposure was the surprise recognition test. For each trial, two
pairs were shown sequentially and at fixation. After the second pair,
participants indicated whether the first or second pair was more familiar
using index fingers to press the ‘z’ and ‘m’ keys. Participants were
instructed to focus on accuracy. Each of the six base pairs were
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compared against two foil pairs in a counterbalanced order. This pro-
duced four recognition trials for each base pairs (24 trials total). Each
test trial begin with a fixation dot for 1000 ms, followed by the first pair
for 2000 ms, a blank ISI of 1000 ms, the second pair for 2000 ms, and a
prompt screen with the key mappings that terminated upon response.
The test lasted 2 min on average.

3.7. Transcranial direct current stimulation

3.7.1. Stimulation parameters

In a between-subjects design we manipulated: (1) the type of stim-
ulation; either cathodal (active) or sham (placebo); (2) and the target
region; either the left posterior parietal cortex (PPC) or the left orbital
frontal cortex (OF: active control). To target the left PPC, the cathodal
electrode was placed over the CP3 location according to the interna-
tional 10-20 EEG system, and the return electrode was placed over the
contralateral (right) mastoid bone. To target the orbitofrontal (OF)
control region, we positioned the active (cathodal) electrode just above
the left eyebrow in line with the outer edge of the eyebrow, and used the
same return electrode location. The orbitofrontal cortex was chosen as
the control region because it has not been associated with statistical
learning in the fMRI work.

Stimulation was delivered via a Neuro-Conn stimulator connected to
5 cm X 5 cm rubber electrodes secured to the scalp with Ten20
conductive paste. For the active groups, stimulation was delivered at 0.7
mA intensity for 15 min, plus an additional 30 s ramp up and ramp down
(900 s total). We chose this stimulation protocol based on Nydam et al.
(2018). It produced a maximum current density of 0.028 mA/cm? under
each electrode, well within the safe limits (Nitsche, Liebetanz, et al.,
2003a). Sham stimulation involved 30 s of constant current plus a 30 s
ramp up and ramp down (90 s total). To ensure adequate contact of the
electrodes, the scalp was lightly abraded with alcohol wipes to remove
oil and dirt, and stimulation only went ahead if an impedance below 20
kOhm could be achieved.

3.7.2. Current-flow modelling

Current-flow modelling was conducted apriori using HD-Explore
software (Soterix Medical) to confirm distinct cortical electrical fields
were produced by our two electrode montages. For the PPC montage,
the estimated field-intensity was concentrated in the intra parietal sul-
cus (IPS) within the left posterior parietal region (Brodmann Area 7)
with the current directing up and outward. This was distinct to our
control montage targeting the OF region, for which the modelling
showed concentrated currents in the anterior frontal region (Ba9 and
Bal0), the ventromedial frontal gyrus (Ba25), and the inferior frontal
gyrus (Ba45 and Ba47).

3.8. Procedure

Participants completed the Visual Statistical Learning task online,
during tDCS. Before commencing the task, the stimulation was allowed
to ramp up for 30 s, and stimulation never finished before a participant
had completed all trials in the recognition test. Afterwards, participants
were asked to self-report: (1) whether they recognised any shape pat-
terns during the exposure phase, (2) whether they noticed the existence
of shape pairs during exposure, (3) and to guess whether they were in
the active stimulation condition or the placebo condition.

3.9. Data analysis

Our primary DV was accuracy on the familiarity test, indexed as the
mean proportion correct. Frequentist statistics were computed using
two-tailed tests with an alpha of .05. When calculating the Bayes Fac-
tors, we considered three relevant factors: (a) non-equal difference be-
tween groups, based on our non-directional hypotheses; (b) a small
effect size, based on the previous tDCS literature; (c) and a large credible
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interval, since we could not estimate an effect size with much precision
we permitted. As such, we chose an uninformative prior; a zero-centred
Cauchy distribution with a scale of 0.7. To interpret the Bayes Factors we
employed Jeffrey’s classification scheme (Wagenmakers et al., 2017).
Values greater than three indicated moderate evidence in favour of the
alternate hypothesis relative to the null hypothesis. Values less that one
third indicated moderate evidence in favour of the null relative to the
alternate. Values between one third and three indicated inconclusive
evidence given the data. Finally, to assess learning in each group sepa-
rately, we built null distributions to characterize chance performance
and compared the observed mean to the 95th percentile. To build the
null distributions, individual accuracy scores at test were converted to a
deviance score f (i.e., 65% accuracy becomes +15% deviance),
randomly assigned a sign (4-or -) and then the mean was calculated over
1000 samples.

4. Results
4.1. Planned analyses

4.1.1. Learning across the groups

All three groups performed above chance (i.e., 50%) on the recog-
nition test (Fig. 2). Accuracy was highest in the PPC group (¢ = 62.90%,
6 = 9.6, SEM = 0.14), followed by the Sham group (¢ = 60.60%, ¢ =
13.3, SEM = 0.19), followed by the OF group (4 = 58.80%, ¢ = 12.9,
SEM = 0.18). Learning was robust in all three groups, since the null
distribution tests revealed performance well above the 95th percentile
cut-off. For consistency with the visual statistical learning literature, we
computed one-sample t-tests to compare performance to chance (50%).
All were significant at p < .001 (t 49) = 9.471, 5.631, and 4.854 for PPC,
Sham and OF respectively). In the sham group, half the participants had
the PPC montage and half had the OF montage. We checked there were
no differences in recognition based on montage, and observed evidence
favouring the null hypothesis, t 48y = 0.132, p = .896, BF;¢ = 0.287 (log
BFjp = —1.248).

4.1.2. Stimulation effects on learning

Having established robust recognition in all three groups, we turned
to our hypothesis regarding the effect of stimulation on learning. There
was no such effect. According to an independent t-test, pair recognition
did not differ between the PPC group and the sham group, t (9g) = 1.00, p
=.318,d = 0.201, BF;9 = 0.330 (log BF19 = —1.1), indicating no effect

a Current Flow Modlelling

Orbitofrontal
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of active stimulation, although the data provided only weak support for
the null hypothesis over the alternate hypothesis. The control group
(OF) was no different from the sham group, t 98y = —0.669, p = .505, d
= —0.134; BFp = 0.259 (log BF1p = —1.349), indicating there was no
effect of the control stimulation site, with moderate support favouring
the null hypothesis. The difference between the PPC and OF groups was
not significant, with the data in the uninformative range; t (9g) = 1.795,
p =.076, d = 0.359, BF1y = 0.897 (log BF19 = —0.129). Overall, these
results indicated the data were insufficient to determine any reliable
group differences, though trended towards a null effect of stimulation.

4.2. Exploratory analyses

4.2.1. Removal of non-learners

Despite robust learning at the group level, a portion of participants
failed to recognize the pairs above chance (14% of the total sample).
This was compatible to the broader VSL literature in which roughly one
third of people do not show the learning effect (Arciuli et al., 2014;
Siegelman et al., 2017; Turk-Browne and Scholl, 2009; Turk-Browne
et al., 2005). As such, some have argued that a more representative
measure of learning would be the total number of individuals who
exhibit above chance performance (Siegelman et al., 2017; Siegelman
et al., 2016). A chi-squared test on the number of non-responders indi-
cated no group differences (four in the PPC group, six in the Sham group,
and 11 in the OF group), Xz =4.319, p = .115; BFp = 1.699. Since our
main hypothesis concerned learning we removed these individuals and
computed a one-way ANOVA on mean accuracy, since this test is robust
to differences in sample size. The group effect was not significant, F (3,
126) = 0.108, p = .898, BF;( = 0.082 (means: PPC: 64.4% > Sham: 63.4%
> OF: 63.8%), and the data strongly favoured the null hypothesis over
the alternative. This exploration revealed that constraining the analysis
to learners did not change the pattern of null results. Arguably it led to
proportionally stronger support for the null over the alternative.

4.2.2. Self-report awareness

Upon questioning, 59 individuals (39%) reported that they were
aware of pairs in the exposure phase. By this measure, fewer people were
aware in the OF group (26%), followed by the PPC group (42%), fol-
lowed by the Sham (50%) group. A chi-squared test revealed significant
differences across the groups, XZ = 6.258, p = .044, BF;( = 2.503.
Subjective awareness related to recognition as you might expect, with
higher accuracy in the aware individuals (65.5%) compared to those

b Stimulation Groups
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Fig. 2. (a) Current flow modelling shown for the two electrode montages used to target the left PPC, as the region of interest, and the left OF cortex, as the active
control region. For the sham stimulation (not shown), half the group had the electrodes applied in the PPC montage and half had them applied in the OF montage. (b)
Accuracy on the recognition test across the stimulation groups, with the individual data shown in dots and mean data shown in bars. The horizontal dotted line
represents chance performance (50%) and the error bars indicate the standard error of the mean. All three groups were above chance but there were no group

differences.
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unaware (57.7%), t (148) = —4.084, p < .001, BF;o = 285.4, and this
difference was highly reliable. Critically, when investigating the
possible interaction between awareness and stimulation on accuract, a
two-way ANOVA revealed no Awareness x Group interaction, F (3, 144)
= 0.546, p = .580, BF;o = 0.185, with strong support for the null hy-
pothesis over the alternate. So while fewer people reported being aware
in the orbitofrontal stimulation group, the (null) effect of stimulation on
accuracy did not depend on awareness.

5. Discussion

In Experiment 1, we used the seminal Visual Statistical Learning
paradigm (Fiser and Aslin, 2001) to assess passive encoding of statistical
cues in spatial scenes. The results indicated robust learning of the
embedded structure, but no effect of stimulation on this learning. These
findings stand in contrast to our predictions that were guided by the
cathodal effect observed for spatial context learning (Nydam et al.,
2018). There are two reasons why we may have failed to observe a
stimulation effect in this study. The first pertains to how the learning
was measured.

By asking observers which pair was more familiar at test, the Fiser
and Aslin paradigm involves an overt familiarity judgment. Some au-
thors have noted the limitations of using explicit tests to gauge implicit
knowledge (Turk-Browne et al., 2005), suggesting they may tap
conscious knowledge which is stimulus-specific (Turk-Browne, 2014)
and distinct from implicit knowledge which involves integration across
stimuli (Thiessen et al., 2013). In harmony with this idea, experimental
work has demonstrated that statistical learning produces both implicit
and/or explicit knowledge depending on how the task is implemented
(Batterink et al., 2015; Kim et al., 2009; Otsuka and Saiki, 2016).
Perhaps the clearest support this comes from the contextual cuing
paradigm where explicit judgments about the structure are dissociated
from cuing behaviour since observers typically perform at chance on
recognition tests after learning (Chun & Jiang, 1998, 2003), but see
(Smyth and Shanks, 2008). Indeed, in our previous study, we observed
that stimulation influenced contextual cuing but had no effect on
recognition judgements. It is possible that a testing method where par-
ticipants must make explicit judgements about structure may tap a
different aspect of statistical knowledge than implicit cuing methods,
and this may explain the differences in stimulation effects across the two
tasks.

A second, and more parsimonious, explanation is that the recogni-
tion test lacked sensitivity to a learning process that evolves over time.
The exposure-test format represents a persistent shortcoming in statis-
tical learning research across the visual, motor and language domains
which has been noted by other authors (Siegelman et al., 2016; Turk--
Browne, 2014). When learning is only assessed once, at the end of the
trials, it may miss critical aspects of learning that are dynamic, operate
earlier in time, or are transient across the learning period. Indeed,
Nydam et al. (2018) observed only transient disruption by tDCS, with
cuing eventually reaching the same magnitude across all stimulation
conditions. Therefore, it seems plausible that the offline recognition test
may have missed any influence of tDCS on learning that occurred early
during exposure, or may have reached an asymptote by the time
learning was measured. Given our primary interest in the functional
effects of visual statistical learning on behaviour, we decided to create
an online task using the same shape-pair stimuli that was capable of
measuring the potentially dynamic nature of tDCS effects of the for-
mation of statistical learning.

6. Experiment 2

The second experiment set out to determine whether an online
measure of learning would reveal causal involvement of cortical areas
where an offline measure could not. To do this, we drew inspiration from
the contextual cuing paradigm since it provides an online index of
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learning that is dissociable from practice effects and motor learning. The
gap between cuing with spatial regularities and identity-based structure
had already been bridged by existing variations of the paradigm (e.g.,
Chun and Jiang, 1999; Endo and Takeda, 2004). Thus, we married the
shape-pair structure from the Fiser and Aslin paradigm with an inci-
dental cuing task to create a new online measure of Visual Statistical
Learning.

The new task retained the pair-structure from Experiment 1 by using
the pair items as distractors in a series of visual arrays. A target item was
added to create a visual search task which provided the online response-
time measure across twelve blocks (collapsed into 3 epochs for analysis).
Unbeknownst to participants there were two types of displays. In one
condition, a given subset of distractors was associated with a given
target location. The distractor set was defined by a unique combination
of three base pairs (e.g., A, B, C) where the shapes had a fixed identity,
but appeared in ever changing locations across the blocks. In a behav-
ioural pilot, we observed a robust cuing benefit that appeared in epochs
two and three. The response-time benefit was approximately 80 ms in
magnitude, which was comparable to the spatial cuing effects observed
in other work.

Using tDCS, we targeted the same the left posterior parietal region
using either active (cathodal) stimulation or sham stimulation. The
stimulation parameters were kept the same as in Experiment 1; namely,
15 min’ duration at .7 mA. Our primary hypothesis the same as in
Experiment 1, namely that learning in the active (cathodal) stimulation
group would differ to learning in the sham group (non-directional hy-
pothesis). This would indicate an effect of stimulation of learning. With
our task now designed to be sensitive to the trajectory of learning over
time, we also made a second prediction that was informed by the results
of the previous contextual cuing study. We predicted the effect of tDCS
would be different for an early phase of the task compared to a later
phase.

We decided to drop the orbitofrontal control region and focus on
having a double-blind-placebo-control design. Having only one active
stimulation condition meant the experimenter could be blinded to the
stimulation condition because there was no need to change cables (as
would be needed with anodal and cathodal conditions) or to change the
electrode montage (as would be needed with a control region). Given the
potential biasing effects of experimenter instructions on the evolution of
learning across time, this element of the design was crucial to assess our
hypothesis regarding an early modulatory effect. Again, we had strong a
priori predictions about the effect of cathodal currents based on the
previous finding with contextual cuing.

7. Method
7.1. Participants

The design, hypotheses and analysis plan for Experiment 2 we logged
prior to data collection [osf.io/7hqgxe]. A total of 84 participants were
recruited, however four were excluded prior to analysis because two
failed to learn the appropriate key mappings and two experienced
technical errors with the stimulator. This left a final sample of 80 par-
ticipants (mean age = 20.43 years, 65% female, 36.25% glasses or
contact use, mean Oldfield (1971) handedness score = 84.49%, mean
Impedance = 16.95 kOhm).

7.2. Online visual statistical learning task

7.2.1. Stimuli

The stimuli were the same back shape-silhouettes arranged into six
distractor-pairs and one target-pair (Fig. 3) selected from a pool of 24
shapes. Because the shapes had different surface areas, it was important
to equate the size of shapes in the target pair, so that one shape was not
more salient than the other, which could produce a pop-out effect when
searching for the target. To address this, we sorted shapes based on total
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Fig. 3. The online Visual Statistical Learning paradigm used in Experiment 2. (a) The stimuli were the same as Experiment 1: six base pairs to serve as distractors (A,
B, C, D, E, F) plus a seventh pair to serve as a target object. (b) Participants performed visual search to locate the target-pair (shown circled in red or blue) and
respond to its orientation in a 2AFC manner. On each trial, the target pair appeared surrounded by three base pairs, each presented twice, to form a distractor subset
that was defined by the item identities. (c) In the repeat condition, a given distractor subset (e.g., A, B, C) was consistently associated with a target location. In the
novel condition, the association between subset (e.g., A, E, F) and target location was varied across blocks. Note that while each shape belonged to a single pair, each
pair belonged to multiple subsets — meaning it was the specific combination of pairs in a distractor subset that was predictive (or non-predictive) of the target
location. Red and blue circles and borders are for illustrative purposes and were not visible in the task. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

pixels before generating the target-pairs for each individual.

The task was to locate the target-pair, which was always on a diag-
onal, and report the arrangement of shapes being either “shape A above
B” or “shape B above A”. Responses were given using the ‘z’ and ‘m’ keys
with index fingers on each hand. (Note an observer could also concep-
tualize the response as to report whether shape A was “above” or
“below” shape B. Regardless, the task was to find two adjacent shapes
among distractors and respond to a feature of that object by integrating
across the two shapes. Participants practiced the response-mapping for
24 practice trials.

7.2.2. Target-Subset Association

While searching for the target pairs, observers encountered sets of
distractors that were comprised of the base pairs used in the Fiser and
Aslin paradigm from Experiment 1. To make search more difficult, each
base-pair was shown twice, which required enlarging the grid from 3 x
3 cells to 5 x 5 cells. The six base-pairs were recombined to form eight
subsets used in repeat trials and eight used in novel trials. Across the
blocks, the shapes in repeat subsets appeared with fixed identities but in
ever changing locations, and the subset cued the target pair location.
The shapes in the novel subsets also repeated across blocks, but varied in
relation to the target location. To control for target probability learning,
we matched the number of target locations used in the repeat and novel
conditions. It is worth noting that the repeat and novel conditions
contained the same six base-pairs. It was the specific subset of pairs that
defined a repeat or novel context. This meant that simply learning the
pair structure alone was not sufficient to produce a cuing benefit.

Search trials began with a fixation cross for 500 ms (jittered between
100 and 500 ms), followed by the search display for 3000 ms, followed
by a blank ITI for 500 ms. . If participants had not responded in the
allotted time, a prompt screen appeared until response, Trials were ar-
ranged into 16 blocks of 16 trials (eight repeat and eight novel trials per
block). Participants were encouraged to maintain accuracy above 85%.
Every second block, the script would pause for a break and provide
accuracy feedback. The apparatus was the same as Experiment 1: a 19”

CRT monitor (resolution 1024 x 768; refresh rate of 100 Hz) connected
to an Apple iMac computer, with participants seated unrestrained
approximately 63 cm from the screen.

7.3. Procedure

Participants attended a 1-h session where they completed a brief
practice of 15 search trials before commencing the online statistical
learning task with concurrent (online) stimulation that lasted 15 min. To
enact the double-blind procedure, participants were randomly assigned
to receive active (cathodal) or sham stimulation using a custom MAT-
LAB script. It output a secret 5-digit code that the experimenter used to
run the stimulator without knowing the condition allocations. After the
stimulation, the electrodes were removed from the scalp, and partici-
pants completed the same recognition test as in Experiment 1. Finally,
participants answered some open-ended questions which probed their
awareness of the subset patterns and the stimulation type (sham control
or active), then they were debriefed and paid AUS$20 for time and
travel.

8. Results
8.1. Planned analyses

8.1.1. Stimulation effects on learning

Response times became increasingly faster in the repeat condition
relative to the novel condition in both groups (Fig. 4, panel B). A 3-way
ANOVA was computed on the epoch data (Fig. 4, panel A) with the
factors: Trial Type (Repeat or Novel), Epoch (1-3), and Stimulation
Group (Active or Sham). This revealed a main effect of Trial Type, F 1, 75
=17.05,p < .001, 1712, = 0.18, BFj¢ = 21.293, indicating an overall speed
benefit for repeat arrays relative to novel arrays. There was also a main
effect of Epoch, F 5 156 = 67.10, p < .001, 7/ = 0.46, BF1g = 1.29e+42,
indicating a general speed improvement over time. Critically, the 3-way
interaction - Trial Type x Epoch x Stimulation Group - was significant, F
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subjects standard error of the mean.

1, 78 = 17.05, p < .001, nﬁ = 0.18, BF;p = 12.67, in support of our
prediction that stimulation affected identity-cuing (i.e., the Trial Type x
Epoch effect) and the way it did so changed over the course of the task.

To follow-up the 3-way interaction, we ran planned ANOVAs to
assess the nature of the cuing effect (Trial Type x Epoch) in each group
separately. In the sham group, learning was characterized by a Trial
Type x Epoch interaction, F 5 75 = 5.023, p = .009, ’15 = 0.114, indi-
cating the cuing benefit emerged over time. There was also a main effect
of Trial Type, F 1, 30 = 8.473, p = .006, ;15 = 0.178, a main effect of
Epoch, F 5 78 = 33.19,p < .001, r]f, = 0.460. Planned contrasts indicated
how cuing was not present in Epoch 1, t 39 = —0.604, p = .549, BFo =
0.291, which showed a reliable null effect, but emerged over time and
was robust in Epoch 2, t3g = —3.531, p = .001, &= —0.558, BF1p =
56.905, and Epoch 3, t 30 = —3.459, p = .001, d®> = —0.547, BFj =
47.502. The magnitude of the cuing benefit was 61 ms in Epoch 2 and
78 ms in Epoch 3, and the Bayes Factors indicated the data strongly
favoured the cuing benefit over the null hypothesis.

Learning in the active stimulation group was characterized by a main
effect of Trial Type, F 1, 39 = 8.595, p < .001, 175 = 0.181, along with a
main effect of Epoch, F 5 156 = 34.761, p <.001, 115 =0.471, but no Trial
Type x Epoch interaction, F o, 7g = 0.202, p = .817. This was because a
cuing benefit was already robust in Epoch 1, t 39 = —2.571, p = .014, &
= —0.406, BF1( = 6.042, and remained so for Epoch 2, t 39 = —2.726, p
=.010, d> = —0.431, BF;o = 8.424, and Epoch 3, t 30 = —2.545, p = .015,
&P= —402, BF19 = 5.732. The benefit was 65 ms, 50 ms and 58 ms across
the epochs, and Bayes Factors favoured the alternate hypothesis over the
null in all cases.

8.1.2. No baseline differences between groups

There were no differences between groups prior to learning; either in
terms of the overall RT in block 1, t 73 = 0.342, p = .733, or the cuing
effect in block 1, t ;3 = —0.0007; p = .994, BF;o = 0.234. This confirms
that the tDCS effect emerged over time with learning and cannot be
explained by existing differences between the groups.

8.1.3. No effect of stimulation on overall RTs
When collapsing across Trial Type to look at overall RT changes,

there was a general reduction across the blocks, F 5 73 = 25.563, p <
.001, but no main effect of stimulation, F 1, 73 = 0.184, p = .669, nor an
interaction with stimulation, F 5 7g = 0.381, p = .683. This showed that
tDCS did not cause a general change in procedural learning in the visual
search task. Instead, the effect of stimulation was selective to statistical
learning, being the difference between repeat and novel conditions over
time. Consistent with this pattern, the overall RTs in Epoch 1 did not
differ across the stimulation groups, t 73 = 0.342; p = .762, only the
cuing magnitude in Epoch 1was affected by the stimulation.

8.1.4. No effect of stimulation on accuracy

Accuracy was at ceiling, being consistently above 90%, and no in-
dividuals performed below the 75% exclusion cut-off. Analysis of the
accuracy data revealed a main effect of Trial Type, F 1, 73 = 8.021,p =
.006, 72 = 0.093, and Epoch, F 1, 75 = 5.670, p = .004, 1 = 0.068, to
show that performance became both more accurate and faster for repeat
subsets over time. The stimulation did not affect accuracy, as no other
effects were significant (all other ps > .215). This confirmed there was
no speed accuracy trade-off with cuing or with the stimulation effect.

8.1.5. No pair recognition after learning

As with Experiment 1, participants completed a recognition test on
the pairs (Fig. 4, Panel D) but this time it was after the stimulation had
ended. As expected, recognition did not differ between the groups, t 7 =
—0.670, p = .505, BF19 = 0.271, with the data favouring the null hy-
pothesis over the alternate hypothesis. In the sham group, pair recog-
nition significantly above chance, t 39 = 2.043, p = .049. However, the
data was in the unreliable range, BF1( = 0.982, and thus was likely to be
spurious. Only 55% of individuals performed above chance in the sham
group. In the Cathodal group recognition not significantly above chance,
t 39 = 1.278, p = .210. The data were inconclusive but trending toward
support for the null hypothesis, BF = 0.396. In this group, only 52% of
participants performed above chance. Permutation tests on recognition
accuracy produced the same pattern of results. The mean deviation from
chance (+3.54% > 2.92) was above the 95th percentile cutoff for the
Sham group, but not for the Cathodal group (+1.98% < 2.6). These
results show there was no reliable recognition of the pairs in Experiment
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2.
8.2. Exploratory analysis

8.2.1. Early vs late learning effect

The results above showed that identity-cuing emerged earlier during
active stimulation than during sham stimulation. To directly compare
the early cuing effect in each group, we ran a 2-way ANOVA on cuing
magnitude (novel RTs-repeat RTs) with factors Phase (Early and Late, i.
e., Epoch 1 and Epoch 3) and Stimulation Group (Active and Sham).
There was a significant Phase x Group interaction, F 1, 73 = 4.544,p =
.036, 115 = 0.055, which provided a direct test to show that the difference
in cuing magnitude between groups depended on the phase of learning.
In Epoch 1, cuing magnitude was a 51 ms larger in the active group (65
ms + 25.49) than in the sham group (14 ms + 24.78). While this dif-
ference represented a meaningful advantage to search times, an inde-
pendent samples t-test was not significant, t;g = 1.422, p = .080, BF;o =
1.55. The Bayes Factor was at least directionally consistent with the
alternate hypothesis, however, with the data being only 1.5 times more
likely under the alternate than under the null, the evidence was anec-
dotal at best, and suggests the need for more data to be collected in order
to determine the nature of stimulation effects on learning.

To summarise, we observed that stimulation did affect visual statis-
tical learning in a manner that changed over time (i.e., Trial Type X
Epoch x Stimulation Group, BF;g = 12.67). The interaction appeared to
be driven by an early benefit in the active stimulation group, that while
functionally meaningful (i.e., a benefit of 50+ ms), the direct compari-
son was inconclusive.

9. General discussion

We investigated the effects of a non-invasive brain stimulation pro-
tocol on shaping the visuo-spatial statistical learning process. Across two
experiments we used cathodal tDCS to modulate activity in the left
posterior parietal cortex during exposure to visual structure. The viso-
spatial structure involved identity-based regularities, while controlling
for location-based regularities. Based on the hypothesis that frontopar-
ietal involvement reflects a general statistical learning process rather
than a task-specific process, we predicted that the same tDCS protocol
that affected learning spatial cues in contextual cuing would also
modulate learning identity cues in this task. When stimulation was
delivered during passive viewing, no effect on learning was detected
(Experiment 1). When stimulation was delivered during the execution of
a task, tDCS did have an effect on learning (Experiment 2). These results
were consistent with the previous observation that cathodal tDCS
altered the formation of statistical learning in a spatial contextual cuing
task. Together, the findings provide support for the hypothesis that the
activity in cortical regions, such as the left PPC, is causally involved in
the visual statistical learning process.

Experiment 2 investigated whether the inconclusive findings from
Experiment 1 related to the use of a one-shot recognition test that was
not sensitive to learning across time. In line with this, we observed that
tDCS did influence statistical learning when using an online task to track
the learning process. The effect was not explained by pre-existing dif-
ferences between the groups. Nor was it explained by a speed/accuracy
trade-off, not a change in general task performance. Rather, tDCS spe-
cifically altered the difference between repeat and novel responses over
time, which was our index of statistical processing. We concluded that
administering tDCS over cortical regions can alter statistical learning of
identity-based regularities.

A number of factors may have helped yield the positive result with
our online task in Experiment 2. We discuss three plausible explana-
tions. The first reason is that the tDCS-induced changes in neural activity
interacted with task-based changes to alter the normal learning process.
This account is consistent with previous work in the motor domain that
observed similar interactions between excitability-altering stimulation
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and the degree of task-induced brain activity (e.g., Kuo, 2008; Stagg
et al., 2011). For example, delivering anodal tDCS during a motor
learning task enhanced learning, whereas offline stimulation reduced
learning (Stagg et al., 2011). Perhaps more relevant is how delivering
tDCS during a serial reaction time task altered learning, whereas
delivering tDCS during a simple reaction time task did not affect
learning (Kuo, 2008). The effects of task-engagement have also been
reported with TMS, since theta-burst stimulation over the left DLPFC
affected memory retrieval only when delivered during an active task
condition, and not when delivered a during passive condition (Marin
et al., 2018). This evidence supports the assertion that the degree of task
engagement can modulate stimulation effects, in line with the broader
activity-dependent hypothesis (i.e., Bikson and Rahman, 2013). Until
now, similar regulatory mechanisms had not been documented outside
the motor and primary sensory areas. The present work may suggest that
similar regulatory mechanisms in higher-association areas also govern
tDCS effects on the statistical learning process.

Nevertheless, it is not clear from the present results whether an early
modulatory effect of tDCS may have been present with the passive
viewing scenario in Experiment 1. Intermittent recognition tests have
been used previously to show temporal changes in brain activity during
passive statistical learning in the language domain (Karuza et al., 2013).
Thus, a plausible alternative reason for the present result is that tDCS
modulated the early formation of statistical learning, regardless of the
active or passive nature of the task. A third possibility was that the
involvement of associative mechanisms in the online task were
responsible for the observed effect. The role of implicit prediction in
cuing tasks might have meant that retrieval operations yielded the
modulatory effect of tDCS in our online task. However, an effect of tDCS
on retrieval would have likely manifested during the later phase, when
the target-subset associations were more established, and not during the
early phase as we observed. Given the known interactions between brain
stimulation and endogenous brain activity (i.e., task-based activity), we
prefer the explanation that an online task afforded the observation of an
early modulatory effect. Future investigations should be conducted to
determine the contribution of factors like passive viewing, visual search
and predictive associations in modulating tDCS effects on statistical
learning as well as behaviour more generally.

The ability to generalize findings about statistical learning across
different tasks settings has been criticized by some in the broader
literature. This was largely based on evidence showing that task aspects
can change what is being learned about an underlying structure (Bays
et al., 2016; Turk-Browne et al., 2005; Turk-Browne, Isola, Scholl and
Treat, 2008a). Considering these criticisms, it was important to empir-
ically examine the degree to which a given tDCS effect on statistical
learning would generalize across task domains. The combined obser-
vations of a tDCS effect on behaviour when learning spatial regularities
and identity-based (Aly and Turk-Browne, 2017) regularities
strengthens the case for cortical involvement in a general statistical
learning process. The causal evidence supports existing claims from the
imaging literature that proposed higher-order cortical regions played an
intervening role in the visual statistical learning process. While learning
visuo-spatial regularities had consistently been associated with a
network that included primary visual, parietal, frontal and medial
temporal lobe structures, some studies had reported increased activity to
regularities, while others reported decreased activity, and others
focused on more dynamic connectivity patterns. The present findings are
more in line with the suggestion that distinct patterns of neural activity,
evoked by the task and stimuli, may be important for the formation of
visual statistical learning effects on behaviour.

Stimulation affected identity-cuing in a time-varying manner that
mirrored the early locus with spatial cuing observed previously (Nydam
et al., 2018); albeit in the opposite direction (i.e., benefit vs. disruption).
It is worth considering how a time selective or dynamic effect can arise
when tDCS delivers a constant current throughout. Despite this fixed
parameter, the impact of tDCS on excitability measures, such as motor
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evoked potentials using TMS, is non-linear across time (Bonaiuto et al.,
2016; Samani et al., 2019). So one explanation for the present result is
that it reflect dynamic changes to excitability produced by tDCS. Yet
tDCS-induced changes also reflect an interaction with task-based activ-
ity, and the encoding of statistical structure has been related to dynamic
changes in task-evoked activity. For example, functional connectivity
data across task domains had identified a dynamic hippocampal-parietal
network during exposure to regularities (Karuza et al., 2017; Manelis
and Reder, 2012). Compared to baseline, this network showed an early
increase in connectivity, followed by a later decreased (Karuza et al.,
2017). A similar network dynamic was reported in a visual-temporal
learning paradigm (Turk-Browne et al., 2010), and may be a candi-
date for a domain-general mechanism (Batterink et al., 2019). The
strongest evidence in support of this notion is how cuing behaviour was
more strongly related to the early activity change than a later activity
change (Manginelli et al., 2013). Given the totality of this evidence, we
believe the dynamic nature of tDCS effects reflects dynamic changes in
task-evoked activity over the learning period.

What do these early dynamics tell us about statistical learning more
generally? There are two models of statistical learning that could explain
such a dynamic trajectory. The two-stage model offers an explanation
(Turk-Browne et al., 2005) based on the role of selective attention that is
believed to decrease over time with learning. A more recent, but related,
framework proposes that statistical learning can be decomposed into an
early extraction stage and a later integration stage (Thiessen et al.,
2013). Relating these two ideas back to the present work, the stimula-
tion may have produced the most noticeable changes during an active
stage that occurred early on. This proposal could be investigated in
future work by commencing tDCS after different amounts of learning
have taken place, to see if stimulation exerts a time-varying effect when
delivered after the early stage has been completed.

Despite both contextual cuing and cuing with identity-structure
showing an early effect, the direction of the effect was opposite. How
could the same stimulation protocol impair spatial-cuing (i.e., Nydam
et al., 2018) but facilitate identity-cuing (i.e., Experiment 2)? As a start,
such variability is consistent with the broader tDCS literature. Cathodal
currents may produce both facilitation and impairment in different
contexts. Enhancement by cathodal tDCS was reported in the domains of
visuospatial attention (Bolognini et al., 2010; Sparing et al., 2009),
language acquisition (Floel et al., 2008; Meinzer et al., 2012), working
memory (Fregni et al., 2005; Ohn et al., 2008; Zaehle et al., 2011), and
recognition (Luo et al., 2017). Whereas, disruption by cathodal tDCS
was reported for decision-making (Filmer et al., 2013). Adding to this
complexity is the fact that tDCS-induced changes interact with
task-generated activity to produce changes to measured output (Antal
et al., 2007; Bortoletto et al., 2015). Meaning the task-based activity
recruited by spatial-structure versus identity-structure may be distinct.

Another intriguing possibility relates to the modulatory role of
attention in directing which statistics may be learned learning (Turk--
Browne et al., 2005, Turk-Browne and Scholl, 2009). Behavioural work
on contextual cuing has demonstrated that both spatial cues and identity
cues can contribute to the incidental learning behaviour (Chun and
Jiang, 1999; Endo and Takeda, 2004). However, when both cues were
made available, there was a preference for learning the spatial cues
(Endo and Takeda, 2004). The proposal that spatial cues may override
identity cues under normal circumstances might explain how one could
observe an opposing effect pf the same tDCS protocol across tasks as
being based on the mechanism for spatial preference. If, under normal
conditions, the system preferentially encodes spatial cues, then a cath-
odal tDCS protocol might yield a disruptive effect in a task where spatial
cues are predictive (i.e., contextual cuing) but produce a benefit in a task
where identity cues are predictive. Unlike the identity cuing task used
previously, only identity cues were available in our task. Therefore,
there is no way to know if there was a preference for one type of in-
formation over another. One way to test this empirically would be to use
a task like Endo and Takeda (2004) to see if tDCS over the left PPC might
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reduce the spatial preference and bolster learning of identity cues, when
both cue-types are available. The use of combined methods that are able
to image the brain during, or close after, stimulation will be useful to
inform better predictions about the directionality of stimulation effects.
Broadly speaking, the difference in directionality we have observed
embodies active and open debate concerning how to relate tDCS effects
to measured behaviour in different tasks (Bestmann et al., 2015).

We observed converging evidence that a tDCS protocol using cath-
odal currents can influence the visuo-spatial statistical learning process
across tasks. The use of a double-blind procedure in Experiment 2 meant
we could be confident that the results were not due to systematic dif-
ferences between active stimulation sessions and the sham sessions. That
being said, we cannot yet make definitive conclusions (Ball et al., 2013)
about the specificity of the parietal region without an active (Baker
et al., 2004) control region. One alternative interpretation of the tDCS
effect may be that anodal currents from the return electrode were pro-
ducing the effect. We find this unlikely for two reasons. The mastoid is a
popular and appropriate return electrode site used in many tDCS studies.
This is because the electrode is positioned over a thick bony part of the
skull where fewer currents may penetrate, and any that do are likely to
be less focal than the current flow under the active electrode site. Our
current flow modelling supported this notion, predicting the most
concentrated area of current was located in the parietal lobe under the
active/cathodal electrode. Therefore, we argue that changes in the
cortex under the active electrode were responsible for the present
effects.

We observed converging evidence that cortical activity plays an
intervening role in the visuo-spatial statistical learning process across
tasks. In order to understand the nature of this cortical mechanism it
would be important to compare different types of stimulation (i.e.,
anodal and cathodal tDCS, tRNS or tACS) applied over different nodes in
this distributed network. There is already evidence other types of
stimulation can regulate implicit statistical learning in contextual cuing
(Rosero Pahi et al., 2020). Specifically, theta-burst stimulation (TBS)
over the left DLPFC was shown to improve spatial cuing compared to
TBS over the vertex (Rosero Pahi et al., 2020). Improvements by TMS
targeting the DLPFC have also been reported for unconscious perceptual
memory (Lee et al., 2013). Meanwhile, long-term memory retrieval was
disrupted by TBS over the DLPFC (Marin et al., 2018) and re-learning
implicit cues was disrupted by rTMS over frontopolar cortex (Zin-
chenko et al., 2019). This mixed evidence fits with suggestions that the
fronto-parietal network is recruited for memory-guided attention across
a range of implicit and explicit task demands (Miller and Cohen, 2001;
Pergolizzi and Chua, 2017; Wang et al., 2019; Ciaramelli and Mosco-
vitch, 2020). While some have interpreted this evidence as support for
the notion that cognitive control circuits in the DLPFC are not required
for implicit behaviours; thereby explaining how ‘“disrupting” these
networks could facilitate learning (i.e., Lee et al., 2013; Rosero Pahi
et al., 2020), we caution against interpreting our result as a “disruptive”
effect. As stated, cathodal tDCS can have both facilitatory and inhibitory
effects, and we did not measure neural activity changes directly.
Furthermore, an account based on “disruption” of cognitive control re-
gions cannot explain the disruptive effects of stimulation (Nydam et al.,
2018; Marian et al., 2018). Instead, we interpret these results as being
due to task-dependent activity in frontoparietal regions that can regulate
the statistical learning process.

9.1. Conclusions

By modulating neural activity with tDCS during exposure to statis-
tical regularities, we demonstrated that cortical brain activity is
involved in the visual statistical learning process. In particular, these
brain regions appear to be important for the way regularities are used to
guide ongoing goal-directed behaviour. These empirical findings
establish further causal evidence that the neural substrates of statistical
learning likely involve brain regions beyond the sensory and medial
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temporal lobe areas to include higher-level cortical regions within the
frontal and parietal lobes. Most interestingly, the present findings
converged on an early locus of cortical involvement that may relate to
network dynamics in the parietal region that change with exposure to
regularities. These findings add to theoretical understandings about how
the brain produces incidental learning behaviour across different types
of visual input and task settings.
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