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Abstract

An accurate quantification of effect sizes for an experimental manipulation has the power
to motivate theory, and to reduce misinvestment in scientific resources by informing power
calculations during study planning. Such a quantification could theoretically be achieved
by a meta-analysis. However a combination of publication bias and small sample sizes
(~N = 25) hampers certainty that such an analysis would yield a non-erroneous estimate.
We sought to determine the extent to which each of these caveats may produce error in
effect size estimates for 4 commonly used paradigms assessing attention, executive function
and implicit learning (attentional blink (AB), multitasking (MT), contextual cueing (CC),
serial response task (SRT)). We combined a large dataset with a bootstrapping approach to
simulate 1000 experiments across a range of N (13-313). Beyond quantifying the effect size
and statistical power that can be anticipated for each study design, we demonstrate that
experiments with lower values of N can lead to problematic information loss, potentially
biasing power calculations. Furthermore, we show that for the CC and SRT, a meta-analysis
of experiments with lower N is unlikely to ever converge on the true effect size, owing to
underspecification of the mapping between theory and statistical model. We conclude with
practical recommendations for researchers and demonstrate how our simulation approach can
yield theoretical insights that are not readily achieved by other methods; such as identifying
when qualitative individual differences exist in response to an experimental manipulation.
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1 Introduction

Despite the complexity involved in disentangling the myriad of functional circuits that underpin cognition,
decision making regarding theoretical support from experimental outcomes is often made on binary (i.e. pass
or fail) terms, across the psychological, neuroscientific and biomedical sciences (Szucs and Ioannidis 2017).
Specifically, theoretical predictions are often specified in terms of the presence or absence of a given
experimental effect, and a yes/no decision is made about whether the null hypothesis (absence of an effect)
can be rejected. Considering the complexity of the human brain, it seems unlikely that such pass/fail
decision-making will be sufficient to disentangle the myriad functional systems that the brain has developed
over millions of years of evolution. An alternate approach is to develop theory and models that attempt to
quantify the extent to which an effect should be observed, i.e. the anticipated effect size. A prediction of
magnitude is easier to disprove than presence/absence, and therefore constitutes a more desirable prediction
for theory testing (Popper 1959). To move towards theories that predict changes in effect magnitude, it is
essential that we gain an understanding of exactly how much insight is yielded from our current effect size
estimates; i.e. how well are we currently quantifying effect sizes? Are current experiments likely to produce a
reasonable effect size estimate given the typical sample size (N) employed for that domain of study? What is
the nature of the information that is lost because the typical N is used rather than a larger sample size? Is
that information loss critical for accurate inference? Further, is there a way to diagnose from only studies of
smaller N when there likely exists a problem of critical information loss? Here, we address these questions by
simulating 1000s of experiments using a large dataset (N = 313), where participants completed a battery of
tasks well known to the cognitive psychology literature; namely the attentional blink (AB, Raymond, Shapiro,
and Arnell (1992)), a multitasking paradigm (MT, Schumacher et al. (2001)), a contextual cueing task (CC,
Chun and Jiang (1998)) and the serial reaction time task (SRT, Nissen and Bullemer (1987)).
Quantifying the range of the effect sizes that would be observed across multiple experiments from a given field
(e.g. many experiments using a particular paradigm) can motivate theory development beyond knowing the
most likely size of the experimental effect. In Bayesian approaches, effect sizes are often assumed to be drawn
from a Cauchy distribution (Gelman et al., (2008); Liang et al (2008); Morey and Rouder (2011); Rouder
et al., (2009; 2012); Rouder and Morey (2012)). Setting a Cauchy prior over effect sizes provides desirable
theoretical properties in a Bayesian analysis, such as scale invariance and a greater weighting on larger effect
sizes (J. N. Rouder et al. 2009). However, it does not follow that effect sizes for all paradigms are well
described by a Cauchy distribution. For example, Rouder and Haaf (2021) recently showed that data from a
colour-naming response conflict experiment (Stroop task) was best modelled as containing individuals that
showed qualitatively differing performance patterns; i.e. some showed patterns of faster response times (RTs)
to low conflict conditions and slower RTs to high conflict conditions, whereas others showed the opposite
pattern. If qualitatively differing responses exist in the population, then a multimodal distribution of effect
sizes should emerge over the course of many experiments, as chance ensures that each response type will be
represented to varying extents in each experiment. Distributions of effect sizes may vary in other ways; for
example testing of a cognitive function that is influenced by the circadian rhythm may yield different sized
effects depending on the time of day each experiment was run, resulting in a highly variable distribution of
effect sizes across experiments. Understanding how effect size observations may vary across many experiments
therefore provides the opportunity to leverage insights about the nature of the phenomenon under study that
may not be gained from a single experiment alone. Indeed, performance on the AB, MT, CC, and the SRT
have each been associated as varying with underlying cognitive phenotypes (Thomson et al. (2015); Seddon
et al. (2021); Jiang, Sisk and Toh (2019); Stark-Inbar et al. (2017)), leaving open the possibility that these
paradigms quantify effects that are manifest differently across participants and experiments.
A further advantage to quantifying variation in effect size estimates relates to the practicality of computing
power calculations when planning new investigations. By knowing the range and probability of effect sizes
observed over many experiments with varying sample sizes (from small to very large N), any researcher
planning a new study will attain several critical pieces of information that facilitate planning. For example,
our survey of the literature below shows that the median sample size for AB experiments is N = 25. Knowing
the results of many experiments with N25 provides key information about the average effect size yielded
across experiments. The researcher can use this information to compute the sample size required to achieve
the desired statistical power for their next experiment. However, it also provides the opportunity to draw
conclusions about the utility of using an incomplete set of effect size estimates from the field, such as when
a researcher picks a handful of relevant studies to approximate an anticipated effect size for their power
calculation. This endeavour is helped when it is possible to compare outcomes to other possible yet fictional
worlds, such as one where the typical sample size is much higher, say N = hundreds of participants. The
researcher can find evidence of the extent to which the range of effect sizes observed with N25 provides a
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good approximation of the range of effect sizes observed when hundreds of participants are used to produce
more accurate estimates instead. Understanding the extent of this mismatch gives the researcher some
understanding of how likely they are to go awry if using incomplete information for their power calculations.
One approach to attaining more information about the variability of effect sizes across experiments is to
conduct a meta-analysis of the published literature. However, as publishing null results is difficult and
publication is more likely to favour the larger of possible effect sizes, it is likely that basing decisions only on
published data will lead to inflated effect size estimates. Indeed, a recent survey of 900 effect sizes across
psychology disciplines showed that effects from non-pre-registered studies were much larger than pre-registered
studies (r = 0.36 vs 0.16, Schäfer and Schwarz (2019)). Thus, basing computations only on the published
literature may misdirect time and resources during the scientific endeavour. Here, we present an alternative
approach to quantifying the error in effect size estimates that we apply to data from well utilised paradigms
in experimental psychology (AB, MT, CC & SRT). Application of our approach also allows us to quantify
the extent to which a meta-analytic estimate of the effect size from the published literature would be inflated
for each paradigm, which sheds insight into parts of the literature where information may be incomplete due
to publication bias.
To quantify the error in effect size estimates that may currently exist for the AB, MT, CC and SRT, we
follow a recent neuroimaging study that sought to quantify the impact of sample size on the reproducibility
of voxel-based lesion deficit mapping as used to predict behavioural deficits in stroke patients (Lorca-Puls et
al. 2018). Using a large dataset (N=360), the authors sampled thousands of bootstrap surrogate experiments
that varied in sample size from N = 30 to 360. By recording effect size estimates and p-values from each
analysis, they were able to demonstrate how studies with low N often failed to lead to a significant result and
were therefore potentially missing from the published literature. Moreover, studies with low N were likely
to overestimate the effect size. Studies with larger N often yielded significant results, but with larger N ,
the estimate of effect size was shown to be small, calling into question the practical relevance of the results
for the field. Thus, applying a bootstrapping approach to simulate thousands of experiments from a larger
dataset provides the opportunity to document more complete information regarding the underlying effect
which has both theoretical and practical relevance.
In the current study, we applied a comparable approach using an existing behavioural dataset. Participants
(N = 313) completed a battery of cognitive tasks originally assembled to test the relationship between
attention, executive function and implicit learning. For each paradigm, we simulated 1000 bootstrapped
experiments across 20 Ns ranging from 13 to 313. For each paradigm and from each set of simulations, we
sought to provide an estimate of the most likely effect size (using N313) and quantified how much the best
estimate would differ if it was derived from 1000 experiments using the N that is typical for the field. We next
determined the extent to which information was lost by approximating effect sizes with lower values of N , and
whether any inflation in estimates occurred as a consequence of basing calculations on only significant findings.
We show that for the AB and MT, use of the currently published literature is likely to produce accurate
quantification of effect sizes. In contrast, effect sizes for CC are small and would only be quantified accurately
in meta-analysis if the field uses an N much higher than what is typical. Examination of distributions of
effect sizes for the SRT shows that individuals cluster around either small or large effect sizes, thus informing
theory. We propose a potential diagnostic for determining whether any field is likely to suffer from critical
information loss when consisting of studies with lower N . Last, we conclude with practical recommendations
for researchers planning cognitive experiments and outline implications for current mappings of theory to
statistical models.

2 Methods

2.1 Participants

The current study uses a data set collected for a different pre-registered project examining the relationship
between executive function and implicit learning. This data set contains performance measures from N =
313 participants. Participants were undergraduate students, aged 18 to 35 years old (mean = 20.14 yrs, sd =
3.46). Of the total sample, 208 reported being female, and 269 reported being right handed. Participants
received course credits as compensation. All procedures were approved by The University of Queensland
Human Research Ethics Committee and adhered to the National Statement on Ethical Conduct in Human
Research.
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Figure 1: Task battery. A) Attentional Blink Paradigm (AB). Participants report the two letter targets from
the rapid serial visual presentation of numbers and letters. B) Multitasking Paradigm (MT). Participants
discriminate the colour of a disc, a complex tone, or both. C) Contextual Cueing Paradigm (CC). i)
Participants perform an inefficient visual search task where they search for a rotated T among L distractors.
ii) Unknown to participants, half of the search arrays are repeated throughout the course of the experiment.
D) Serial reaction time task (SRT). Participants respond to one of four stimuli, each mapped to a spatially-
compatible button press. Unknown to participants, for half of the experimental blocks, the stimulus follows a
repeating sequence.

2.2 Apparatus

Experimental procedures were run on an Apple Mac Minicomputer (OS X Late 2014, 2.8 GHz Intel Core i5)
with custom code using the Psychophysics toolbox (v3.0.14) (Brainard 1997; Pelli 1997) in Matlab v2015b.
Participants completed 7 tasks; Attentional Blink (AB), Multitasking (MT), Contextual Cueing (CC), Serial
Response Task (SRT), Visual Statistical Learning (VSL), Operation Span task and a Stop Signal Inhibition
task. Only the data from the AB, MT, CC and SRT are reported here. We opted not to report the VSL,
OSPAN or Stop Signal data as their design did not lend themselves to the computation of a standardised
effect size.

2.3 Procedures

Across all tasks, participants sat approximately 57 cm from the monitor. An overview of the task procedures
is presented in Figure 1. Further details regarding the task protocols are presented within each section
below. We first provide an overview of the simulation procedures, before detailing the specific procedural and
statistical methods for each task.
All the data and code used for the current analyses are available online. All data were analysed using R
-Team (2015) and RStudio -RStudio Team (2020). The analysis of the data from each task followed two steps;
first, to ascertain that we observed the typical findings for each of the paradigms, we applied the relevant
conventional statistical model to the full dataset (N=313). Next, we implemented a simulation procedure to
determine the effect size and p-values that would be attained over many experiments conducted at multiple
levels of sample size.
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2.3.1 Sampling procedure

For each task, we simulated experiments across 20 different sample sizes (Ns), defined on a logarithmic
interval between N=13 and N=313 (N = [13, 15, 18, 21, 25, 30, 36, 42, 50, 59, 69, 82, 97, 115, 136, 160, 189.
224, 265, 313]). We opted for a logarithmic interval given the decreasing information gained at higher N
values. To simulate k=1000 experiments at each of our chosen N , we sampled N participants from Nmax

over k iterations. The relevant analysis was applied to each of the samples. Details regarding which analyses
were applied to each k sample are listed below for each paradigm. Sampling with replacement ensured that
the samples carried the Markov property. One potential concern is that any reductions in observed effect
size variability may be attributable to saturation as the simulated N approaches the maximum (Nmax=313),
rather than a genuine reduction in variance of the estimate of the effect. Specifically, it could be that as N
approaches 313, the overlap of participants between samples is greater than when N equals a lower number
such as 13. It follows then that any decreasing variability in effect size estimates at higher Ns could be due
to the decrease in variability of the samples, rather than the improved estimate of the population variance
that should come with a larger N . We have run simulations that argue against this explanation and these
can be found in appendix i.
Effect Sizes For each task, we report the following information from the effect size densities produced from
simulating 1000 experiments: to assess the best estimate of the effect size and its variability, given our large
dataset, we report the median and the standard deviation observed for our highest N (apart from in one case
of bimodality, where we report the points of highest probability, the median and the .025 and .975 quantiles).
These values can be used to motivate power calculations for future studies. To test whether the best estimate
differs from what is representative for the field, we next report the summary statistics for the N that is closest
to the median sample size from a survey we conducted of the recent literature (see below). We use Q-Q
plots to determine the nature of information loss between the densities observed at median and maximal Ns.
Specifically, a linear relationship between densities with symmetry across the unity slope suggests that the
two contain comparable information, whereas a non-linear relationship suggests information present in one
density that is not present in the other. The latter of which is problematic as it is assumed that accumulation
of smaller studies should yield information that approximates the ‘truth’, or the same information that should
be found if we could sample the entire population. We next sought to provide an estimate of the effect sizes
that would be yielded from aggregating only across experiments with statistically significant results (p<.05),
under the assumption that the published literature is more likely to contain significant results and is not likely
to contain null results. Therefore, this estimate would reflect what is likely to be obtained when performing a
meta-analysis of the existing published literature. We then present the difference between the mean observed
effect size and the mean estimate of this biased effect size, for each level of N . Effectively, this analysis is
assessing the severity of the file-drawer effect for different sizes of N .
To attain an N that reflects what is commonly used for each task, we surveyed the three most relevant
Journal of Experimental Psychology journals (General, Human Perception & Performance and Learning,
Memory & Cognition) for all articles mentioning the use of any of the current tasks. We searched back for a
total of 60 experiments or back from today to 2005, whichever occurred first. We then computed the median
sample size used across all experiments found from the survey. The results from the survey are presented in
Table 1.

Table 1: Typical N found from literature survey. n exp = number
or experiments, med N = median N

task n exp med N
AB 60 24
MT 60 40
CC 49 24
SRT 60 34

p Values To determine the N required to achieve 90% power to reject the null hypothesis, we report the N
for which over 90% of p-values pass the threshold for significance for the effects of interest (α=.05). To assess
the range of p-values that one can expect to observe at some given N , i.e. the confidence for the most likely
observed p-value, or certainty of the test outcome, we computed the difference between the the .025 and .975
quantiles (q) of the observed p-values at each level of N . We then computed the ratio between that range and
that observed for the median N for the field ( qN

qmedianN
). Values over 1 suggest that the uncertainty over the
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p-value is higher for the given N , relative to the median N for the field. We call this value the q − ratio. As
p-values clustered close to 0 in many instances, this measure will be subject to some floor effects but should
also determine where clear information gains are available by increasing N . Additionally, because p-values
cluster close to 0, we applied the probit transform to rescale the values on the range [-∞, ∞] for visualisation
purposes only.

2.4 Attentional Blink (AB)

The AB task taps limitations in the deployment of visual information processing over time. Participants
are instructed to detect two targets from a rapidly presented series of visual items. Accuracy for the second
target is poorer if it appears closer in time to the first target (at early lags, from lag 2 onwards), relative to
further apart in time (Raymond, Shapiro, and Arnell 1992).

2.4.1 Protocol

The AB protocol was the same as that reported in Bender et al (2016). Each trial began with a black fixation
cross presented in the center of a gray screen [RGB: 128, 128, 128] for a variable interval of 200-600 ms.
On each trial, letter targets and digit distractors were each presented centrally for 100 ms in rapid serial
presentation. The eight distractors were drawn without replacement from the digits 2-9. The target letters
were randomly selected from the English alphabet, excluding I, L, O, Q, U, V and X. The first target (T1)
was the third item to be presented (serial position 3), and T2 was presented at either lag 2 (200 ms), 3
(300 ms), 5 (500 ms) or 7 (700 ms) relative to T1. All stimuli subtended 1.72 x 2.31 ◦ (w x h) visual angle.
Participants were instructed to make an unspeeded report of the identity of both targets at the end of each
trial. Participants completed 24 practice trials and four test blocks of 24 trials. For the current analysis we
calculated T2 accuracy, given that T1 was correctly reported (T2|T1), for each lag.

2.4.2 Statistical Approach

As is typical for the field, and to ascertain the effectiveness of the lag manipulation, T2|T1 accuracy was
subject to a repeated measures ANOVA, with lag (2, 3, 5, & 7) as the independent variable. This analysis
was also applied to each k sample. For each k sample, η2

p and the resulting p value were taken for the main
effect of lag. For this task, and all remaining ANOVA tests, models were fit using the anova_test() function
from the rstatix package. Where possible, the models were fit using type 3 sum of squares, owing to the
computational expediency and match to commercial statistical software packages. In some cases, models
were unable to be fit using type 3 sum of squares, owing to rank deficiencies in the underlying design matrix
(e.g. when one participant was drawn more than twice within a sample). In these cases, models were fit using
type 1 sum of squares. However, as the experiment designs were fully balanced, each sum of squares type
should yield the same results.

2.5 Multitasking (MT)

MT paradigms tap the performance costs incurred when individuals attempt to perform more than one
task concurrently. Participants are instructed to complete two simple sensorimotor tasks as accurately and
quickly as possible under single or multitask conditions. RTs to the constituent tasks are typically slowed for
multitask relative to single task conditions (see Pashler (1994), for a review).

2.5.1 Protocol

The MT protocol was previously reported in Bender et al (2016). Each trial began with a black fixation cross
presented in the center of a gray screen [RGB: 128, 128, 128] for a variable interval of 200-600 ms. Next
either one of two coloured circles [red, RGB: 237, 32, 36 or blue, RGB: 44, 71, 151] or one of two sounds
(complex tones taken from (Dux et al. 2006)), or both (circle and sound) were presented for 200 ms. The
coloured circle subtended 1.3◦ visual angle. Participants were instructed to respond to all presented tasks by
using the appropriate key press [‘A’ or ‘S’ for left hand responses, ‘J’ or ‘K’ for right hand responses, with the
task-hand mapping counterbalanced across participants]. The MT protocol consisted of 4 blocks of 36 trials,
with each trial type (single-task [ST] visual, ST auditory or MT) randomly mixed within blocks. Participants
completed the MT protocols after completing two ST blocks as practice, one for the visual task and one for
the auditory task. Mean response times (RTs) to each task modality x condition were taken as the dependent
variable of interest.
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2.5.2 Statistical Analysis

To ascertain the effectiveness of the multitasking manipulation, the data were modelled using a 2 (task-
modality: visual-manual vs auditory-manual) x 2 (task: ST vs MT) repeated-measures ANOVA. This analysis
was also applied to each k sample; η2

p and p are reported for the main effect of task.

2.6 Contextual Cueing (CC)

CC tasks tap how the visual system exploits statistical regularities to guide visual search (Sisk, Remington
and Jiang, (2019); Jiang and Sisk (2020)). Participants are typically asked to report the orientation of a
rotated ‘T’ target presented among an array of distractor ’L’s. Participants are not informed that a set of the
displays are repeated throughout the course of the experiment, while the remaining displays are novel to
each trial. Typically RTs to the repeat displays become faster than novel displays throughout the course of
the experiment (e.g. Chun and Jiang 1998; Nydam, Sewell, and Dux 2018). Participants are typically poor
at recognising repeat displays in a subsequent recognition test (Sisk, Remington and Jiang, (2019); Jiang
and Sisk (2020)), which has prompted the conclusion that CC reflects a process of implicit learning (but see
Vadillo, Konstantinidis, and Shanks 2016; Vadillo et al. 2020, 2021).

2.6.1 Protocol

The CC protocol was the same as that reported by Nydam et al (2018) which is modeled on Chun and Jiang
(1998). Each trial began with a white fixation cross presented on a grey screen [RGB: 80, 80, 80]. An array of
12 L’s and a single T were then presented presented within an invisible 15 x 15 grid that subtended 10◦ x 10◦

of visual angle. Orientation of each L was determined randomly to be rotated 0◦, 90◦, 180◦ or 270◦ clockwise.
The T was oriented to either 90◦ or 270◦. Participants reported whether the T was oriented to the left (using
the ‘z’ key) or the right (using the ‘m’ key), as quickly and accurately as possible. The task consisted of 12
blocks of 24 trials. For half the trials in each block, the display was taken (without replacement) from 1 of 12
configurations that was uniquely generated for each participant, where the location of the distractors and
target (but not the orientation of the target) was fixed. These trials were called ‘repeats’. For the remaining
trials, the display was randomly generated for each trial, making them ‘novel’. Displays were generated with
the constraint that equal items be placed in each quadrant and each eccentricity. Target positions were
matched between the repeat and novel displays for both quadrant and eccentricity. The exact location of the
item was jittered within each cell for each presentation, to prevent perceptual learning or adaptation to the
specific position of the item. The order of display type (repeat vs novel), configuration (1:12) and target
orientation (left or right) was randomised for each block. Mean RTs to each block (1:12) and display type
(repeat vs novel) were taken as the dependent variable.

2.6.2 Statistical Approach

To ascertain whether participants became faster for repeat relative to novel trials over the course of the
experiment (i.e. whether participants learned the statistical regularities of the repeated displays), the data
were subject to a block (1:12) x condition (repeat vs novel display) repeated measures ANOVA. Specifically,
learning should be evidenced by a significant block x condition interaction. This analysis was applied to each
k sample, and we report η2

p and p for the block x condition interaction.
As some studies from the contextual cueing literature suggest that the effect is better characterised by a main
effect of condition thereby implying rapid learning of the statistical regularities (e.g. Peterson and Kramer
2001; Travis, Mattingley, and Dux 2013), we also report the η2

p and p for the main effect of condition.

2.7 Serial Response Task (SRT)

In the SRT task, participants are required to make key presses in response to one of four spatially compatible
visual cues (Nissen and Bullemer 1987). Participants are instructed to make the relevant key press as
quickly and accurately as possible. Participants are not informed that for half of the experiment, visual cue
presentation follows a repeating and reliable sequence, whereas for the remaining half of the experiment, cue
presentation is random. RTs are typically faster for the final sequence block than for the final random block,
even though the random block is presented subsequently to the sequence block. Comparable to the CC task,
participant’s lack of awareness of the sequence lends support to the notion that the SRT reflects an implicit
process of procedural sequence learning.
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2.7.1 Protocol

The SRT was adapted from Nissen & Bullemer (1987). Four square placeholders were presented across
the horizontal meridian. A red circle [RGB: 255, 0, 0] appeared in one of the 4 squares for 500 ms. This
served as the target stimulus. Participants responded by pressing the finger of their dominant hand that
spatially aligned to the target circle, using the relevant ‘j’, ‘k’, ‘l’ or ‘;’ keys. The next target stimulus would
appear 500 ms after the correct response had been made. Participants completed 4 blocks of 100 trials.
For blocks 1 and 4, the location of the target stimulus for each trial was randomly selected from a uniform
distribution. These blocks are referred to as ‘random’. For blocks 2 and 3, a repeating sequence of 10 elements
was used to determine the target location. The sequence was repeated 10 times. The repeating sequence
was 4-2-3-1-3-2-4-2-3-1, with 1 being the leftmost placeholder, and 4 being the rightmost placeholder. These
blocks are referred to as ‘Repeat’ blocks. Learning in the SRT is tested by comparing mean RTs between
Random and Repeat blocks in the latter half of the experiment (block 4 vs 3).

2.7.2 Statistical Approach

To ascertain whether participants learned the repeating sequences, RTs in the final block of sequence trials
(block 3) were compared to those in the final block of random trials (block 4) using a paired-samples t-test.
This analysis was also applied to each k sample, and we present the resulting Cohen’s d, and p value from
each test.

3 Results

3.1 Attentional Blink

An overview for the findings for the AB task are presented in Figure 2. T2|T1 performance suffered
proportional to temporal proximity to T1; proportion accuracy for T2|T1 decreased (by around p = 0.32)
when T2 was presented at lag 2, relative to lag 7. A one-way ANOVA revealed that the effect of lag was
statistically significant (F (2.4, 749) = 508, η2

p = 0.62, p = 1.88e-157). Post-hoc t-tests showed that accuracy
at each lag differed statistically from accuracy at each of the other lags (all p’s ≤ 3.68e-18), with lower
accuracy values at the shorter relative to the longer lags. Therefore, we see that our implementation of the
AB paradigm yielded the typically observed effects.
Effect sizes As can be seen in Figure 2 (panel B), increasing N reduced the variability of observed effect
sizes. For the simulations with N313, the median observed effect size was large (median η2

p = 0.63, sd: 0.03).
This was comparable to the median N for the field (N25, median η2

p = 0.64, sd: 0.06). This suggests that
the long running median of effect sizes observed across AB studies would converge on a reasonable estimate
of the true effect size. Moreover, the linear form of the Q-Q plot, with symmetry around the unity slope
suggests that there are not gross differences in the form between the N313 and N25 densities (Figure 2, panel
C). This suggests that aggregation of studies with the typical N is unlikely to lead to information loss that
would hamper the approximation of the true median effect size, however, the increased variability at lower
N shows that median effect size estimates need to be based on complete information - i.e. from across all
studies. There were no differences between the observed effect size distributions and the biased effect size
estimate (mean of all effect sizes with p<.05), across all levels of N (Figure 2, panel D), suggesting that the
AB effect is large enough to yield consistent statistically significant results, even with small N .
p Values All observed p-values were < .05, even for the lowest sample size (N13, see Figure 3, panel A).
Therefore, decision-outcomes are likely the same across all AB experiments. Figure 3, panel B, shows the
ratio between the .025 and .975 quantile ranges for N25 relative to the other Ns. Uncertainty in the p-value
estimate rapidly increased for N < 25, for example the q-ratio was 30.15 for N21 vs N25, and was 37563 for
N13 vs N25. However, variation in uncertainty over the p-value was minimal for N > 25; e.g. q-ratio(N30 vs
N25) = 0.01. Thus more caution is warranted when interpreting the p-values of studies with less than N25.

3.2 Multitasking

As was anticipated, RTs were slowed for multitask relative to single task conditions (see Figure 4, panel A).
Mean RTs were on average 0.31 (95% CI[0.30, 0.33]) seconds (s) slower on MT trials (F(1, 312) = 2653, η2

p =
0.90, p<.0001). There was also a significant task modality (sound or visual) x task (ST vs MT) interaction
(F(1, 312) = 59.4, η2

p = 0.16, p<.0001), with the MT cost (MT RT - ST RT) being larger for the sound task
relative to the visual task by on average 0.08 s (95% CI[0.06, 0.10]). This latter finding has been previously
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Figure 2: AB Effects. A) Violin plot showing accuracy across subjects for T1 and T2|T1 by lag for the
original full data set. As was expected, accuracy for T2|T1 was poorer at shorter relative to longer lags. B)
Observed effect size densities for simulated experiments for select N . C) QQ-plot of the density of effect sizes
observed for the median N (25) against that observed for Nmax. D) The difference between the observed and
the biased effect size estimate was 0, across all N .
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Figure 3: p-values from the AB analysis. A) Probit transformed p-values for selected N . B) Ratio between
the .025 and .975 quantile ranges of p-values observed for each level of N, relative to N25
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Figure 4: MT Effects. A) Violin plots of mean RTs for each multitasking condition broken down by task
modality. As was expected, RTs were slower for multitasking relative to single-task conditions. B) Observed
effect size densities for simulated experiments for select N . C) QQ-plot of the median N (N42) against N313.
D) The difference between the observed and biased mean effect size was 0 across all N. S = single-task, M =
multi-task, So = sound manual task, V = visual manual task

reported in the multitasking literature (Hazeltine and Ruthruff (2006), Kelly G. Garner et al. (2015)), but is
not pertinent to the focus of the current work, which seeks to quantify the effect size for the main effect of
multitasking cost.
Effect sizes Similar to the AB findings, the effect size distributions for the MT paradigm show that increasing
N reduced the variability of η2

p (see Figure 4, panel B). The best estimate of the effect size (with N313) was
large (median η2

p = 0.90, sd: 0.01). This estimate matches that observed for the typical N of the field (N42,
mean η2

p = 0.90, sd: 0.03). Therefore, collating currently published data would likely produce a reasonable
estimate of the true effect size for multitasking costs with two simple sensorimotor tasks. The Q-Q plot
between η2

p densities for N42 and N313 shows a linear relationship with symmetry around the origin slope,
suggesting that the effect size distributions are the same shape across N albeit with greater variability at
N42 (Figure 4, panel C). This finding suggests that error in effect size estimates observed at the typical N42
is more likely to lead to misleading estimates under conditions of incomplete information (i.e. when there are
power calculations based on only a few studies). Also similar to the AB results and owing to the 100% power
attained at N13 (see below), there were no differences between the observed effect size distributions and the
biased effect size estimate, across all levels of N (Figure 4, panel D).
p Values As with the AB, all observed p-values were < .05 (see Figure 5, panel A for example p distributions).
As can be seen in Figure 5 (panel B), distributions of p-values became more uncertain with decreasing N ,
however uncertainty plateaued at ~N21 (e.g. q-ratio(N18 vs N21) = 32.37 and q-ratio(N25 vs N21 = 0.02).
Thus error can be reduced in estimation of the p-value for samples up to N25, beyond that information gains
are minimal.
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Figure 5: p-values from the MT analysis. A) Probit transformed p-values for selected N . B) Ratio between
the .025 and .975 quantile ranges of p-values observed for each level of N, relative to N42
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Figure 6: Contextual Cueing Performance. A) Group mean RT plotted by block (x-axis) and condition
(novel vs repeat display). Error bars reflect SEM on original (full) data set. B) As in A but presenting violin
plots for each block x condition. Examination of the dispersion of data suggests that the interaction is small
(although it is statistically significant).

3.3 Contextual Cueing

Participants learned the repeat displays over the course of the experiment; the RT data showed a significant
albeit small block x condition interaction (F (10.12, 3158.9) = 4.80, η2

p = 0.01, p = 6.01e-07). There was no
statistically significant difference between RTs for repeat and novel displays at the beginning of the experiment
(block 1: t (312) = 0.53, p = 0.60, µ difference = 0.01 s, sd: 0.20). However, by block 12, RTs for repeat
displays were on average 0.04 s faster than novel displays (sd: 0.14, t (312) = 5.33, p = 1.87e-07, see Figure
6, panel A). There was also a significant and larger main effect of block (F(5.03, 1567.97) = 131.08, η2

p =
0.30, p = 1.07e-116). Of relevance for the subsequent discussion on the η2

p results, there was also a significant
main effect of condition (F(1.00, 312.00) = 32.78, η2

p = 0.10, p = 2.42e-08).
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Effect sizes The observed η2
p densities are presented in Figure 7 for the block x condition interaction (panel A)

and for the main effect of condition (panel B). There was disparity between the median effect sizes observed
for the block x condition interaction for N25 (median η2

p = 0.06, sd: 0.03) and N313 (median η2
p = 0.02, sd:

0.01). In contrast for the main effect of condition, the median effect size was consistent between N25 and N313
(N25 median η2

p = 0.10, sd: 0.12, N313 median η2
p = 0.10, sd: 0.05). However, there was some discrepancy

when the mean of the η2
p was taken for the main effect of condition (N25 mean = 0.06 vs N313 = 0.02, see

Figure 7, panels B and D). Figure 7, panel C, shows that for the block x condition interaction, even without
consideration of publication bias, there is still substantial inaccuracy associated with small samples, with
central tendencies being inflated and increased skewness (see difference between mean, median and mode).
The Q-Q plots further revealed the disparity between the densities for both the block x condition interaction
and the main effect of condition (Figure 7, panel E). Specifically, the relationship between both sets of
densities looks to be non-linear, suggesting that the distribution of effect sizes yielded from experiments with
N25 carries different information to those yielded from experiments of N313. Furthermore, the asymmetry of
the Q-Q plot relative to the unity slope suggests there is little overlap between the densities for the block x
condition interaction. Taken together, these findings suggest that aggregating across typical experiments of
the field is unlikely to converge on the true effect size. Rather, an accurate estimate would be gained if the
field uses experiments with larger N , at least when modelling the effect using repeated measures ANOVA.
Moreover, biased mean effect sizes were larger than observed mean effect sizes up until N115, suggesting that
a current meta-analysis of the field would result in an inflated effect size estimate, owing to the possibility of
a file drawer effect for experiments with lower Ns (Figure 7, panel F).
p Values In contrast to the AB and MT results, 82 participants were required to achieve > 90 % power to reject
the null hypothesis for the block x condition interaction (see Figure 8, panel A, for example densities). For the
main effect, > 90 % power was achieved with 136 participants (see Figure 8, panel B, for example densities).
Again, the uncertainty over p-values decreased with increasing N (see Figure 8, panel C). Examination of the
plot shows that uncertainty attenuated at around N136 for the block x condition interaction and at around
N224 for the main effect of condition. Thus more caution is warranted when interpreting the p-values of CC
studies with lower N .

3.4 SRT

Participants learned the repeating sequence; RTs were on average 0.049 s faster (95% CI [0.046, 0.051]) for
the sequence relative to the random condition (t(312) = 33.60, d = 1.07, p = 1.13e-105).
Effect sizes The observed d densities are presented in Figure 9, panel B. Interestingly, all densities were
bimodal. The density for the median N (N36) showed 2 peaks, occurring over d = 0.6 and d = 1.3 respectively.
Bimodality was still evident at N313, with peaks over d = 0.7 and d = 1.22. Owing to this shifting bimodality,
there was also disparity in the median estimate across simulations (N36 median = 1.28 95% CI: 0.54, 1.86,
N313 = 1.17, 95% CI: 0.71, 1.46). The Q-Q plot between N36 and N313 (Figure 9, panel C) shows some
non-linearity, suggesting differences in the form of the effect size distributions observed for N36 and Nmax.
This suggests the possibility of critical information loss when using experiments of lower N to produce effect
size estimates for SRT. In line with the notion that there may be information loss at lower N , mean biased
effect sizes were larger than observed effect sizes up until (and not including) N30, suggesting that collation
of SRT studies with an N less than 30 would produce an inflated estimate of the effect size, and that a field
consisting of SRT studies with less than N30 may produce a file-drawer effect (Figure 9, panel D).
p Values For the SRT data, 13 participants was sufficient to achieve 92 % power to reject the null hypothesis
(see Figure 10 for example Ns). As can be seen in panel B, and comparably to the other tasks, uncertainty
around p was higher for lower N , with information gain saturating at around N30. Thus, more caution is
warranted when interpreting the p-values of studies with less than N30.

4 Discussion

We sought to quantify the extent of error in effect size measurements that likely exist for common paradigms
from cognitive psychology, and the extent to which error can be attenuated with increased sample sizes. To
achieve this aim we used a large dataset (N = 313), where participants completed a battery of cognitive
tasks assessing attention, executive function and implicit learning. Focusing on the attentional blink (AB), a
multitasking paradigm (MT), contextual cueing (CC) and a serial response task (SRT), we applied a boot-
strapping procedure to simulate the outcomes of 1000 experiments at 20 possible levels of N (logarithmically

12



A preprint - January 31, 2022

0.0 0.1 0.2 0.3 0.4

0

10

20

30

40

50

 

ηp
2

de
ns

ity

25
59
136
313

A

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

 

ηp
2

de
ns

ity

B

N

η p2

25 59 136 313

0.01

0.07
mode
med
mean

C

N

η p2

25 59 136 313

0.01

0.14

D

N42

N
31

3

0 0.8

0

0.8
b*c
c

E

−0.2

−0.1

0.0

0.1

N

µd
iff

 

13 21 36 59 97 160 265

b*c
c

F

Figure 7: CC Effects. A) Effect size densities for the block x condition interaction at selected N . B) Effect
size densities for the main effect of condition at selected N . Note the change of scales between A) and B). C)
Mean, median and mode of the effect size densities for the block x condition interaction for selected N. D)
The same as C except for the main effect of condition. E) QQ-plots of densities observed at median N (N25)
against N313. F) The difference between the mean observed and the biased mean, across all N. A value below
0 suggests an inflated estimate of effect size if the field were to use that N , i.e. a file-drawer effect. b*c =
block x condition, c = condition
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Figure 8: Probit transformed p-values from the CC analysis, presented for selected N . A) p-values attained
for the block x condition interaction. B) p-values attained from main effect of condition. The black dotted
vertical line reflects alpha = .05 (probit transformed). Anything to the left of this line is a statistically
significant result. C) q-ratio between the range of p-values observed for each level of N (quantiles .025 - .975),
relative to the median N25 for the field, b*c = block x condition, c = condition
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Figure 9: SRT Effects. A) Violin plots of mean RT across subjects plotted for random vs sequence conditions
from the final two blocks of the experiment, for the full dataset. Participants were faster for sequence trials.
B) Observed effect size densities (d) for simulated experiments for select N. C) QQ-plot of the density observed
for the median N (N36) against N313. D) The difference between the mean observed and mean biased effect,
across all N. A value below 0 suggests that considering only published results would result in an inflated
estimate of the effect in the field.
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Figure 10: Probit transformed p-values from the SRT analysis, presented for selected N . A) p-values attained
for the t-test analysis.The black dotted vertical line reflects alpha = .05 (probit transformed). Anything to
the left of this line is a statistically significant result. B) Ratio between the range of p-values observed for
each level of N (quantiles .025 - .975), relative to the median N36 for the field

spaced between 13-313). For each paradigm, we quantified the best estimate of the effect size with N313 and
compared this to the median N computed from a survey of each field. We also determined how well the
distribution of effect sizes from 1000 experiments using the median N compared to that observed for N313,
and whether critical information was lost when distributions based on lower N were used to approximate
N313. This provides insights into the extent to which using partial information to compute relevant effect
sizes may lead researchers awry. Lastly, we quantified the extent to which a meta-analytic approach to the
published literature may lead to an overestimate of effect size owing to publication bias.
We found common and divergent answers to these questions across the paradigms. The main common finding
is that across all tasks, effect size estimates for the median N were more variable than effect size estimates for
N313. These data show that incomplete information from experiments using lower values of N are more likely
to result in erroneous calculations. Specifically, basing power calculations on one or a handful of studies is
likely to lead to inaccuracy when computing required sample sizes. This problem is exacerbated as the N
gets further from the actual N required to reliably produce a statistically significant test. Additionally, we
found across all paradigms that as N increased, so too did the certainty of the p-values observed. Specifically,
there were rapid increases in the uncertainty over the estimate of the p-value with lower values of N . Thus
more caution should be exercised when interpreting p-values from studies with N lower than the point of
diminishing information gain. We return to this point in the practical recommendations section below.
Examination of the distributions of effect sizes across possible N values revealed some key differences between
the paradigms. For the AB and MT paradigms the distributions overlapped well across increasing N ,
demonstrating that taking the median effect size across the existing literature should produce a reasonable
estimate of the true effect. This was not the case for the CC and SRT paradigms employed here but for
differing reasons. For the CC task, graphical depiction of the group mean RTs showed that there was an
interaction between block and display type (repeat vs novel), but examination of RTs across participants
revealed this effect to be small. With regard to the effect size distributions, increasing N reduced the median
effect size for the key interaction. We believe this is at least partly related to an underspecified mapping
between theory and model, which we discuss further below. However, what the current data suggest is that
aggregation of the current CC literature would produce an inflated estimate of the size of the interaction and
that experiments with larger N are needed.
In contrast, the SRT data showed a bimodal distribution of effect sizes across all levels of N . This suggests
that SRT effects are likely driven by two underlying effects in the population and that taking the median
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effect size from the field would result in a mischaracterisation of the effect. Interestingly, the median N for
the field provides just enough power to reject the null hypothesis for the smaller of the two effects, suggesting
that the field may have self-corrected in response to the smaller effect. Examination of the distributions
also shows that even if the bimodality were already known, using currently published literature to estimate
the size of each effect would yield inaccurate results as densities from smaller N both underestimate the
smaller, and over estimate the larger of the effects. Collectively, examination of effect size distributions from
simulated CC and SRT experiments suggests that for some tasks in cognitive psychology, currently used
sample sizes are not sufficient to contribute to the accurate characterisation of effect sizes that should come
with cumulative science.
Also common to the CC and SRT tasks was the finding that meta-analyses of the current field may produce
an inflated estimate of the effect size, assuming that it is more difficult to publish null results 2. Particularly
striking was the finding that 82 participants were required to achieve > 90% power to reject the null hypothesis
for the CC task, which is substantially higher than the median N from our survey of the field (Nmed =
24). The impact of lower statistical power was reflected in the inflated effect sizes for the biased estimates
(i.e. those containing data only from statistically significant results), relative to those containing the results
from all analyses. In contrast, statistical power for the AB and CC was greater than 90% for the lowest N
(N13), and our analysis shows that a meta-analysis of the field would produce accurate effect size estimates.
Collectively these results demonstrate that effect size estimates need to be based on complete information,
i.e. all studies, to be of utility to study planning and theory development.

4.1 Practical recommendations and theoretical considerations

The researcher seeking to determine the sample size required given an anticipated effect size (i.e. a power
analysis) is faced with a few options for determining exactly what that anticipated effect size should be.
They could define a theoretical effect size of interest; that is, how big does the effect have to be for it to
be meaningful? They could perform a meta-analysis of the field to determine the most likely effect size (a
timely and costly endeavour), or they could take a handful of similar studies and use the average effect size (a
strategy the first author has used herself). The current data show that the last strategy is most error prone;
variance in effect size estimates with typical N show that such a strategy will be based on more variable
information, which is more likely to be erroneous when incomplete. The penultimate strategy is better, but
the current data also show that this can be error prone when a) there exists a file-drawer problem for the field,
and b) when the distribution of effect sizes has not been sufficiently characterised. We therefore recommend
use of the first strategy until these two issues have been sufficiently addressed; researchers should use an
effect size of theoretical interest when performing power calculations for experiment planning.
The current data also presents a call for researchers to provide more complete information regarding the
mapping between theory, choice of statistical model and the fit of that model to data. The impediment
of such mismappings to scientific inference have been discussed elsewhere (Szollosi et al. 2020). In the
current study, visual examination of the behavioural CC data showed a clear, small significant interaction
between block and display type that emerged towards halfway through the experiment; yet as N increased,
the statistical main effect of display became less skewed towards smaller values whereas the interaction effect
became smaller - i.e. there was a trade off between parameters. As the influence of block and condition
appears to be interactive, the finding that the size of the main effect became more likely to be larger with
increasing N is perhaps surprising. Further work is required to ascertain the source of this trade off, however
the current data do suggest that such effects may arise from an underspecified mapping between the statistical
model and the data. For example, it may be that a non-linear model is required to more accurately map the
relationship between the manipulated factors and the behavioural outcome. To better understand where
such limitations may apply across the literature and consequently where alternate models may need to be
developed, we recommend that researchers plot the fit of their statistical models to their data (for example
see Garner, Bowman and Raymond, (2021)). This transparency will allow researchers to determine the extent
to which both the effect size and the p-value reflect meaningful outcomes, given the mapping of theory to
statistical model.
One limitation of the current study is that we cannot show how far our findings generalise to differing
implementations of the paradigms that were used here. An advantage to the current work is that by collecting
a large dataset, we are able to approximate experimental outcomes on the basis of both complete and

2In meta-analysis, more accurate effect sizes can be estimated from a field suffering publication bias using techniques
like funnel plots (Egger et al. 1997). However, these require studies of a range of different effect sizes, including some
big studies, in order to be accurate
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incomplete (meta-analytic) information. This leverages insights that cannot be gained from a survey of
the published literature alone. Furthermore, the current instantiation of each task was closely modeled on
the original or seminal finding, so that our work may be informative to the key methodology for each field.
However, many variants of each task exists. It is pertinent to find out whether the same conclusions would
be borne out by data collected with variations in methodology from other labs. We intend to follow this line
of inquiry in future research. However, examination of the current results do suggest clues for determining
the conditions under which studies with smaller N may lead to problematic information loss for determining
the true effect size, and this information may generalise to paradigms other than those studied here. For the
AB and MT paradigms, where there was no critical information loss at lower Ns, effect size densities were
Gaussian across all N . In contrast, effect size densities were skewed for the median N for the CC paradigm,
and bimodal for the SRT paradigm, and both of these paradigms demonstrated problematic information loss
for effect size densities with lower N . This suggests that the first step to determining whether information
loss may be present in any given field is to collate studies at the typical N and identify whether or not the
resulting effect size density is Gaussian. The validity of this potentially diagnostic criteria needs to be tested
further in more studies involving small and large N .
Overall, our results show that characterising the distribution of effect sizes that would be observed over 1000
experiments also provides insights that support theory development. For example, by understanding that a
bimodal distribution of effect sizes underlies responses to the SRT task, it is now pertinent that models of
temporal sequence learning identify the two causal sources that drive both a small and a large response to the
experimental manipulation. The finding that CC effects do not converge across increasing levels of N suggest
that theoretical accounts likely need to specify predictions in non-linear terms, and determine whether the
presence of small interactions (η2

p = .02) reflects a small learning effect or are better explained by a small
subset of participants explicitly determining the mapping between distractor and target locations (see Sisk,
Remington and Jiang, (2019); Jiang and Sisk (2020) for further discussion). In contrast, the clear unimodal
peaks from the simulated AB and MT experiments suggest that these paradigms are likely tapping a single
causal influence, therefore investigations for why people vary in response to AB and MT manipulations
can more likely focus on quantitative rather than qualitative variations in response differences. Thus, these
findings demonstrate the benefits of complete reporting, larger N and cumulative synthesis of experimental
results on theory and practice in the psychological sciences.
The distributions that we have derived are close to confidence intervals, the difference being that we are
bootstrapping smaller sets from a larger one whereas a confidence interval would only bootstrap samples
of the same size as the collected data. Nonetheless, our investigations raise the question of whether the
bootstrapping of confidence intervals could be performed more often as a means to obtain further certainty in
statistical inferences. In this respect, the distributions we have derived of p-values are particularly noteworthy.
In particular, in classical statistical inference, the uncertainty associated with a p-value is not typically
quantified. However, the investigation presented here suggests that such uncertainty could be quantified
and could be revealing. For example, there will be situations in which a p-value is numerically close to the
decision-bound, but there is high certainty that it is significant, and others in which a p-value is numerically
further from the decision-bound, but there is low certainty for this significance. Thus one could bootstrap
from a collected data set and repeat the analysis being performed on these bootstrap samples, derive a
bootstrap distribution of p-values and see what proportion of it is below the critical alpha level (e.g. Nolan
et al. (2018)). The suggestion would be that we should have more confidence in ascribing significance to
experimental data in which a larger proportion of p-values are below the critical threshold, as well as believing
that this experiment is less likely to suffer a file-drawer effect, if the experiment was repeated many times
with the same N.

4.2 Conclusions

By simulating experiments across multiple N for commonly used paradigms in experimental psychology,
we have characterised the effect sizes and experimental outcomes that would occur for each N . We hope
that this provides practical and useful information to researchers, for example by providing a quantification
of effect sizes and the N required to attain sufficient statistical power when studying attention, executive
function, and implicit learning. Furthermore, we have demonstrated some conditions where insufficient N
may lead researchers and the field awry; for example, lower N values combined with underspecified theoretical
mappings between constructs and statistical tests may yield a body of data where a meta-analysis will fail to
converge on the true nature of the effect under study. We have also demonstrated clearly how accumulation
of effect sizes can inform theory; by characterising how effect sizes are manifest over 1000s of experiments, we
can be more sensitive to the nature of causal influences that are under study.
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